Speed sensorless vector control for rolling stock

Author(s):  
T. Ogawa ◽  
S. Ishida ◽  
T. Kojima ◽  
T. Sato ◽  
H. Taguchi ◽  
...  
2013 ◽  
Vol 344 ◽  
pp. 159-163
Author(s):  
Zhen Jun Lin ◽  
Sheng Hua Huang

Cascaded multilevel inverters could realize high-voltage output based on a series connection of power cells which use standard low-voltage component configurations. This characteristic could achieve high-quality output voltage waveforms and input current waveforms. These merits are made for motor control, especially in the field of speed-sensorless vector control of induction motor based on the theory of MRAS. This paper constructs a simulation system with the help of MATLB/SIMULINK and a system combined cascaded H-bridge multilevel inverter with induction motor with the help of DSP and FPGA. The simulation and experiment results verified the superiority of cascaded multilevel inverter applied on the MRAS speed-sensorless vector control of induction motor.


2019 ◽  
Vol 52 (3-4) ◽  
pp. 202-211 ◽  
Author(s):  
Bo Fan ◽  
Zhumu Fu ◽  
Leipo Liu ◽  
Jiangtao Fu

During the operation of speed-sensorless control system for induction motor, the stator and rotor resistance varies greatly with the change of temperature and the frequency of the rotor side, which affects the estimation of the stator flux and leads to the low accuracy of the speed estimation. A speed-sensorless vector control method based on parameters identification with the full-order adaptive state observer is proposed in this paper. In the model reference adaptive system of AC motor, the stator resistance and rotor flux are assigned as state variables to build the reference model, and a full-order flux observer is introduced to adjustable model. Lyapunov theory and Popov superstability theory are used to deduce the speed and rotor resistance adaptive rate. The feedback gain matrix is simplified to speed up the convergence rate of the system. The estimation values of speed and rotor resistance are taken as the proportional integral form, so that an interactive model reference adaptive system is constructed by speed and rotor resistance identification. While observing the rotor flux, it can not only ensure the accuracy of the reference model but also eliminate the disadvantages of the voltage model with integral terms, and the rotor speed can be estimated at the same time. The experimental results show that the accurate performance of speed and flux identification can meet the requirements of application; the proposed control method with the identification of speed and rotor resistance has little fluctuations phenomenon on motor torque in low speed and achieves better performance.


2018 ◽  
Vol 160 ◽  
pp. 02006
Author(s):  
Zili Liao ◽  
Qijin Zhao ◽  
Xinxi Zhang ◽  
Luming Chen

This paper analysed the basic principle of speed sensorless vector control system. Based on speed and current closed loop vector control, combined with a simple and feasible current hysteresis control strategy, the whole speed sensorless system of asynchronous motor is simulated in MATLAB/Simulink. The method uses the Model Reference Adaptive System (MRAS). The observation and analysis of waveform shows that the system has good static performance and robustness. The control effects are also as similar as the vector control system which contains speed sensor.


Sign in / Sign up

Export Citation Format

Share Document