speed sensorless
Recently Published Documents


TOTAL DOCUMENTS

1095
(FIVE YEARS 188)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Feng Cai ◽  
Ke Li ◽  
Xiaodong Sun

Electrically excited synchronous motor (EESM) is widely used in many large equipment drives because of its strong overload capacity, high efficiency, and adjustable power factor. The research and development of a high-performance EESM control system can realize the high combination of energy-saving speed regulation and green environmental protection and has a high social effect and economic value. In this paper, the signal injection method is used to obtain the initial rotor position information of EESM. Sliding Fourier transform is used to improve the initial position angle detection method based on the rotor signal injection method, and the improved method is compared with the traditional voltage integration method. Rotor high-frequency signal injection method was used to detect the rotor position information of the motor during operation, and the influence of the damping winding on the rotor signal injection method was analyzed. On the premise that the damping winding had no influence on the method, a method of obtaining the rotor position information of EESM without a speed sensor was designed. Finally, the speed sensorless regulation system using the initial rotor position detection method is simulated, which verifies the accuracy of the proposed speed sensorless control scheme.


Author(s):  
Adam Islam Ridhatullah ◽  
◽  
Ariffuddin Joret ◽  
Iradiratu Diah Prahmana Karyatanti ◽  
Asmarashid Ponniran ◽  
...  

In induction motor speed control method, the development of the field-oriented control (FOC) algorithm which can control torque and flux separately enables the motor to replace many roles of DC motors. Induction motor speed control can be done by using a close loop system which requires a speed sensor. Referring to the speed sensor weaknesses such as less accurate of the measurement, this is due to the placement of the sensor system that is too far from the control system. Therefore, a speed sensorless method was developed which has various advantages. In this study, the speed sensorless method using an artificial neural network with recurrent neural network (RNN) as speed observer on three-phase induction motor has been discussed. The RNN can maintain steady-state conditions against a well-defined set point speed, so that the observer is able and will be suitable if applied as input control for the motor drives. In this work, the RNN has successfully estimated the rotor flux of the induction motor in MATLAB R2019a simulation as about 0.0004Wb. As based on speed estimation error, the estimator used has produced at about 26.77%, 8.7% and 6.1% for 150rad/s, 200rad/s and 250rad/s respectively. The future work can be developed and improved by creating a prototype system of the induction motor to get more accurate results in real-time of the proposed RNN observer.


Author(s):  
Xiaoxin Hou ◽  
Mingqian Wang ◽  
Guodong You ◽  
Jinming Pan ◽  
Xiating Xu ◽  
...  

The traditional direct torque control system of permanent magnet synchronous motor has many problems, such as large torque ripple and variable switching frequency. In order to improve the dynamic and static performance of the control system, a new torque control idea and speed sensorless control scheme are proposed in this paper. First, by deriving the equation of torque change rate, an improved torque controller is designed to replace the torque hysteresis controller of the traditional direct torque control. The improved direct torque control strategy can significantly reduce the torque ripple and keep the switching frequency constant. Then, based on the improved direct torque control and considering the sensitivity of the stator resistance to temperature change, a speed estimator based on the model reference adaptive method is designed. This method realizes the stator resistance on-line identification and further improves the control precision of the system. The performance of the traditional direct torque control and the improved direct torque control are compared by simulation and experiment under different operating conditions. The simulation and experimental results are presented to support the validity and effectiveness of the proposed method.


Measurement ◽  
2021 ◽  
pp. 110602
Author(s):  
Jose-Carlos Gamazo-Real ◽  
Víctor Martínez-Martínez ◽  
Jaime Gomez-Gil
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2951
Author(s):  
Chunwen Xiu ◽  
Fei Yao ◽  
Jianli Zheng

The dual three-phase induction motor (DTPIM) has gained wide attention in special applications, such as vessel propulsion, because of its advantages of less torque ripple and higher reliability. However, speed sensors are greatly affected and easily become faulty when used in harsh environments for a long time. In this paper, two model reference adaptive system (MRAS) speed-estimation methods are proposed, based on the double (α, β) coordinate system (DCS) and vector space decomposition method (VSD) of the two groups of the three-phase armature vectors, respectively. Both methods can be used for the speed sensorless control system of the DTPIM to improve reliability. The changing of the stator resistance value, caused by temperature variation, affects the accuracy of the speed-estimation. Two online resistance-identification algorithms, combining the DCS method and the VSD method, were proposed to reduce the effect of changes in stator resistance. Simulation results show that the dynamic speed-estimation error of the VSD method decreased greatly compared with the DCS method, which verifies the effectiveness of the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document