AIgean: An Open Framework for Machine Learning on Heterogeneous Clusters

Author(s):  
Naif Tarafdar ◽  
Giuseppe Di Guglielmo ◽  
Philip C Harris ◽  
Jeffrey D Krupa ◽  
Vladimir Loncar ◽  
...  
2022 ◽  
Vol 15 (3) ◽  
pp. 1-32
Author(s):  
Naif Tarafdar ◽  
Giuseppe Di Guglielmo ◽  
Philip C. Harris ◽  
Jeffrey D. Krupa ◽  
Vladimir Loncar ◽  
...  

  AIgean , pronounced like the sea, is an open framework to build and deploy machine learning (ML) algorithms on a heterogeneous cluster of devices (CPUs and FPGAs). We leverage two open source projects: Galapagos , for multi-FPGA deployment, and hls4ml , for generating ML kernels synthesizable using Vivado HLS. AIgean provides a full end-to-end multi-FPGA/CPU implementation of a neural network. The user supplies a high-level neural network description, and our tool flow is responsible for the synthesizing of the individual layers, partitioning layers across different nodes, as well as the bridging and routing required for these layers to communicate. If the user is an expert in a particular domain and would like to tinker with the implementation details of the neural network, we define a flexible implementation stack for ML that includes the layers of Algorithms, Cluster Deployment & Communication, and Hardware. This allows the user to modify specific layers of abstraction without having to worry about components outside of their area of expertise, highlighting the modularity of AIgean . We demonstrate the effectiveness of AIgean with two use cases: an autoencoder, and ResNet-50 running across 10 and 12 FPGAs. AIgean leverages the FPGA’s strength in low-latency computing, as our implementations target batch-1 implementations.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document