open framework
Recently Published Documents


TOTAL DOCUMENTS

1407
(FIVE YEARS 138)

H-INDEX

78
(FIVE YEARS 7)

2022 ◽  
Vol 15 (3) ◽  
pp. 1-32
Author(s):  
Naif Tarafdar ◽  
Giuseppe Di Guglielmo ◽  
Philip C. Harris ◽  
Jeffrey D. Krupa ◽  
Vladimir Loncar ◽  
...  

  AIgean , pronounced like the sea, is an open framework to build and deploy machine learning (ML) algorithms on a heterogeneous cluster of devices (CPUs and FPGAs). We leverage two open source projects: Galapagos , for multi-FPGA deployment, and hls4ml , for generating ML kernels synthesizable using Vivado HLS. AIgean provides a full end-to-end multi-FPGA/CPU implementation of a neural network. The user supplies a high-level neural network description, and our tool flow is responsible for the synthesizing of the individual layers, partitioning layers across different nodes, as well as the bridging and routing required for these layers to communicate. If the user is an expert in a particular domain and would like to tinker with the implementation details of the neural network, we define a flexible implementation stack for ML that includes the layers of Algorithms, Cluster Deployment & Communication, and Hardware. This allows the user to modify specific layers of abstraction without having to worry about components outside of their area of expertise, highlighting the modularity of AIgean . We demonstrate the effectiveness of AIgean with two use cases: an autoencoder, and ResNet-50 running across 10 and 12 FPGAs. AIgean leverages the FPGA’s strength in low-latency computing, as our implementations target batch-1 implementations.


CrystEngComm ◽  
2022 ◽  
Author(s):  
Yu-Quan Feng ◽  
Linxia Lv ◽  
Dongqin Bi ◽  
Zhiguo Zhong ◽  
Jing Li ◽  
...  

A novel open-framework borate-rich cadmium borophosphate has been obtained by the boric acid reflux method. The compound exhibits a complicated network which is composed of CdO6 octahedra and interesting 1D...


2021 ◽  
pp. 214243
Author(s):  
B. Silva-Gaspar ◽  
R. Martinez-Franco ◽  
G. Pirngruber ◽  
A. Fécant ◽  
U. Diaz ◽  
...  

2021 ◽  
Author(s):  
◽  
Andrew James McFarlane

<p>Nano-structured calcium silicate consists of randomly stacked nano-sized platelets that make up an open framework structure of macropores that resembles a house of cards. This structure affords the material the desirable physical properties of a large pore volume and a highly accessible surface area that exceed many other silicas and silicates. The material is possibly related to other disordered calcium silicate hydrates at an atomic level, although it is the macro-structure and the potential of performing chemistry upon its surface that is of great interest. Due to the novelty of nano-structured calcium silicate, little was known about it before this work. The focus of this study has therefore been placed upon characterising the material and determining the conditions that allow the pore volume and surface area to be maximised. The material is prepared through an initial precipitation from the reaction of a calcium salt with monomeric silica, followed subsequently by self-ordering on both an atomic-scale and on a macro-scale to develop the porous framework. The framework of the material has been found to collapse due to forces created from surface tension during the removal of water from the pores upon drying. The result of this collapse is a substantial reduction in both the surface area and pore volume of the material. Three different methods have been developed to maintain the structure with each modification producing a material that is suitable for different applications. A reinforcing process following the development of the open framework whereby additional silica is polymerised upon the structure strengthens the material so that the forces resulting from the removal pore water are unable to cause collapse of the framework. This material is therefore able to be repeatedly re-wet and dried without any detrimental effect to the pore volume or surface area of the material. The replacement of water within the pores with 2-ethoxyethanol, that has a low surface tension, and by modifying the material through treatment with acid have also been found to prevent collapse of the structure. Through the knowledge gained of the development of the nano-structured calcium silicate and of the reaction conditions required for the optimisation of the surface area and pore volume, a semi-continuous process has been devised that has allowed for production of the material on a larger scale. This work also contains details on the formation of nano-structured calcium silicate by using geothermal water from an electricity generation plant as the source of monomeric silica rather than using sodium silicate. Currently, the formation of a scale from supersaturated geothermal water is problematic for the industries that use the fluid and limits the use of the resource. The removal of monomeric silica from geothermal water as a result of producing nanostructured calcium silicate prevents the formation of the scale and therefore allows a greater proportion of the thermal energy in the fluid to be potentially utilised.</p>


2021 ◽  
Author(s):  
◽  
Andrew James McFarlane

<p>Nano-structured calcium silicate consists of randomly stacked nano-sized platelets that make up an open framework structure of macropores that resembles a house of cards. This structure affords the material the desirable physical properties of a large pore volume and a highly accessible surface area that exceed many other silicas and silicates. The material is possibly related to other disordered calcium silicate hydrates at an atomic level, although it is the macro-structure and the potential of performing chemistry upon its surface that is of great interest. Due to the novelty of nano-structured calcium silicate, little was known about it before this work. The focus of this study has therefore been placed upon characterising the material and determining the conditions that allow the pore volume and surface area to be maximised. The material is prepared through an initial precipitation from the reaction of a calcium salt with monomeric silica, followed subsequently by self-ordering on both an atomic-scale and on a macro-scale to develop the porous framework. The framework of the material has been found to collapse due to forces created from surface tension during the removal of water from the pores upon drying. The result of this collapse is a substantial reduction in both the surface area and pore volume of the material. Three different methods have been developed to maintain the structure with each modification producing a material that is suitable for different applications. A reinforcing process following the development of the open framework whereby additional silica is polymerised upon the structure strengthens the material so that the forces resulting from the removal pore water are unable to cause collapse of the framework. This material is therefore able to be repeatedly re-wet and dried without any detrimental effect to the pore volume or surface area of the material. The replacement of water within the pores with 2-ethoxyethanol, that has a low surface tension, and by modifying the material through treatment with acid have also been found to prevent collapse of the structure. Through the knowledge gained of the development of the nano-structured calcium silicate and of the reaction conditions required for the optimisation of the surface area and pore volume, a semi-continuous process has been devised that has allowed for production of the material on a larger scale. This work also contains details on the formation of nano-structured calcium silicate by using geothermal water from an electricity generation plant as the source of monomeric silica rather than using sodium silicate. Currently, the formation of a scale from supersaturated geothermal water is problematic for the industries that use the fluid and limits the use of the resource. The removal of monomeric silica from geothermal water as a result of producing nanostructured calcium silicate prevents the formation of the scale and therefore allows a greater proportion of the thermal energy in the fluid to be potentially utilised.</p>


2021 ◽  
Vol 42 ◽  
pp. 806-814
Author(s):  
Jingze Bao ◽  
Wenzhuo Deng ◽  
Jiandongyong Liu ◽  
Chuan-Fu Sun

Sign in / Sign up

Export Citation Format

Share Document