Experimental results of slip control with a fuzzy-logic-assisted unscented Kalman filter for state estimation

Author(s):  
Pavel Osinenko ◽  
Mike Geissler ◽  
Thomas Herlitzius ◽  
Stefan Streif
Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 971
Author(s):  
Yogendra Rao Musunuri ◽  
Oh-Seol Kwon

In this study, we propose a method for minimizing the noise of Kinect sensors for 3D skeleton estimation. Notably, it is difficult to effectively remove nonlinear noise when estimating 3D skeleton posture; however, the proposed randomized unscented Kalman filter reduces the nonlinear temporal noise effectively through the state estimation process. The 3D skeleton data can then be estimated at each step by iteratively passing the posterior state during the propagation and updating process. Ultimately, the performance of the proposed method for 3D skeleton estimation is observed to be superior to that of conventional methods based on experimental results.


Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1530 ◽  
Author(s):  
Xi Liu ◽  
Hua Qu ◽  
Jihong Zhao ◽  
Pengcheng Yue ◽  
Meng Wang

Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 214
Author(s):  
Yanbo Wang ◽  
Fasheng Wang ◽  
Jianjun He ◽  
Fuming Sun

The particle filter method is a basic tool for inference on nonlinear partially observed Markov process models. Recently, it has been applied to solve constrained nonlinear filtering problems. Incorporating constraints could improve the state estimation performance compared to unconstrained state estimation. This paper introduces an iterative truncated unscented particle filter, which provides a state estimation method with inequality constraints. In this method, the proposal distribution is generated by an iterative unscented Kalman filter that is supplemented with a designed truncation method to satisfy the constraints. The detailed iterative unscented Kalman filter and truncation method is provided and incorporated into the particle filter framework. Experimental results show that the proposed algorithm is superior to other similar algorithms.


2012 ◽  
Vol 466-467 ◽  
pp. 1329-1333
Author(s):  
Jing Mu ◽  
Chang Yuan Wang

We present the new filters named iterated cubature Kalman filter (ICKF). The ICKF is implemented easily and involves the iterate process for fully exploiting the latest measurement in the measurement update so as to achieve the high accuracy of state estimation We apply the ICKF to state estimation for maneuver reentry vehicle. Simulation results indicate ICKF outperforms over the unscented Kalman filter and square root cubature Kalman filter in state estimation accuracy.


Sign in / Sign up

Export Citation Format

Share Document