Low-voltage ride-through operation of single-stage PV system via using recurrent fuzzy CMAC

Author(s):  
Faa-Jeng Lin ◽  
Kuang-Chin Lu
Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2899 ◽  
Author(s):  
Alexis B. Rey-Boué ◽  
N. F. Guerrero-Rodríguez ◽  
Johannes Stöckl ◽  
Thomas I. Strasser

This article deals with the vector control in dq axes of a three-phase grid-connected photovoltaic system with single-stage topology and low-voltage-ride-through capability. The photovoltaic generator is built using an array of several series-parallel Suntech PV modules and is modeled as a Lookup Table (two-dimensional; 2-D). The requirements adopted when grid voltage sags occur are based in both the IEC 61400-21 European normative and the allowed amount of reactive power to be delivered according to the Spanish grid code, which avoids the disconnection of the inverter under grid faults by a limitation in the magnitude of the three-phase output inverter currents. For this, the calculation of the positive- and negative-sequences of the grid voltages is made and a conventional three-phase Phase-Locked Loop is used for the inverter-grid synchronization, allowing the control of the active and reactive powers solely with the dq components of the inverter currents. A detailed enhanced flowchart of the control algorithm with low-voltage-ride-through capability is presented and several simulations and experiments using Matlab/SIMULINK and the Controller Hardware-in-the-Loop simulation technique, respectively, are run for several types of one- and three-phase voltage sags in order to validate its behavior.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4796 ◽  
Author(s):  
Eyad Radwan ◽  
Mutasim Nour ◽  
Emad Awada ◽  
Ali Baniyounes

This paper presents a control scheme for a photovoltaic (PV) system that uses a single-phase grid-connected inverter with low-voltage ride-through (LVRT) capability. In this scheme, two PI regulators are used to adjust the power angle and voltage modulation index of the inverter; therefore, controlling the inverter’s active and reactive output power, respectively. A fuzzy logic controller (FLC) is also implemented to manage the inverter’s operation during the LVRT operation. The FLC adjusts (or de-rates) the inverter’s reference active and reactive power commands based on the grid voltage sag and the power available from the PV system. Therefore, the inverter operation has been divided into two modes: (i) Maximum power point tracking (MPPT) during the normal operating conditions of the grid, and (ii) LVRT support when the grid is operating under faulty conditions. In the LVRT mode, the de-rating of the inverter active output power allows for injection of some reactive power, hence providing voltage support to the grid and enhancing the utilization factor of the inverter’s capacity. The proposed system was modelled and simulated using MATLAB Simulink. The simulation results showed good system performance in response to changes in reference power command, and in adjusting the amount of active and reactive power injected into the grid.


Author(s):  
Yan Li ◽  
Darui He ◽  
Xun Huang ◽  
Huiyuan Zhang ◽  
Jianghua Lu ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yongheng Yang ◽  
Frede Blaabjerg

The progressive growing of single-phase photovoltaic (PV) systems makes the Distribution System Operators (DSOs) update or revise the existing grid codes in order to guarantee the availability, quality, and reliability of the electrical system. It is expected that the future PV systems connected to the low-voltage grid will be more active with functionalities of low-voltage ride-through (LVRT) and the grid support capability, which is not the case today. In this paper, the operation principle is demonstrated for a single-phase grid-connected PV system in a low-voltage ride-through operation in order to map future challenges. The system is verified by simulations and experiments. Test results show that the proposed power control method is effective and the single-phase PV inverters connected to low-voltage networks are ready to provide grid support and ride-through voltage fault capability with a satisfactory performance based on the grid requirements for three-phase renewable energy systems.


Sign in / Sign up

Export Citation Format

Share Document