Kinematic Analysis and Development of Five-Axis Milling Machine Based on Parallel Mechanisms

Author(s):  
Nguyen Truong Thinh ◽  
Tuong Phuoc Tho ◽  
Le Phan Hung
2004 ◽  
Vol 49 (3-4) ◽  
pp. 395-413 ◽  
Author(s):  
Sergey A. Ivanenko ◽  
Stanislav S. Makhanov ◽  
Mud-Armeen Munlin

Author(s):  
Zhi Xin Shi ◽  
Yu Feng Luo ◽  
Lu Bing Hang ◽  
Ting Li Yang

Because the solution to inverse kinematics problem of the general 5R serial robot is unique and its assembly condition has been derived, a simple effective method for inverse kinematics problem of general 6R serial robot or forward kinematics problem of general 7R single-loop mechanism is presented based on one-dimension searching algorithm. The new method has the following features: (1) Using one-dimension searching algorithm, all the real inverse kinematic solutions are obtained and it has higher computing efficiency; (2) Compared with algebraic method, it has evidently reduced the difficulty of deducing formulas. The principle of the new method can be generalized to kinematic analysis of parallel mechanisms.


2006 ◽  
Vol 129 (4) ◽  
pp. 390-396 ◽  
Author(s):  
Si J. Zhu ◽  
Zhen Huang ◽  
Hua F. Ding

This paper proposes a novel kinematic analysis method for a class of lower-mobility mechanisms whose degree-of-freedom (DoF) equal the number of single-DoF kinematic pairs in each kinematic limb if all multi-DoF kinematic pairs are substituted by the single one. For such an N-DoF (N<6) mechanism, this method can build a square (N×N) Jacobian matrix and cubic (N×N×N) Hessian matrix. The formulas in this method for different parallel mechanisms have unified forms and consequently the method is convenient for programming. The more complicated the mechanism is (for instance, the mechanism has more kinematic limbs or pairs), the more effective the method is. In the rear part of the paper, mechanisms 5-DoF 3-R(CRR) and 5-DoF 3-(RRR)(RR) are analyzed as examples.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Song Gao ◽  
Jihong Chen ◽  
Shusheng Liu ◽  
Xiukun Yuan ◽  
Pengcheng Hu ◽  
...  

Abstract Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.


Author(s):  
Shuofei Yang ◽  
Yangmin Li

Inspired by the existing closed-loop deployable mechanisms and parallel mechanisms, a new kind of mechanisms, named deployable parallel mechanisms, is introduced in this paper, and the kinematic analysis is presented. As the combination of deployable mechanisms and parallel mechanisms, deployable parallel mechanisms have advantages of both the two kinds of mechanisms. They can be easily constructed by origami and folded from spatial structures into paper slices. Due to the parallel structures, they can be designed to have higher stiffness and larger volume compressibility than the existing deployable mechanisms. Thus, deployable parallel mechanisms have tremendous potential to be applied in the design of spatial solar panels, elastic reconfigurable robotic modules, etc. With reference to the kinematic analysis of parallel mechanisms, a finite and instantaneous screw method for kinematics of deployable parallel mechanisms is proposed, which is a generic method that is suitable for displacement and velocity modeling and analysis of any deployable parallel mechanism. A typical mechanism with symmetrical structure is taken as an example to show the validity of the proposed method, and simulation and experiment are carried out to verify the obtained results of kinematics. This paper puts forth the basic concepts of deployable parallel mechanisms and lays a theoretical foundation for their kinematic modeling and analysis.


Sign in / Sign up

Export Citation Format

Share Document