kinematic modeling
Recently Published Documents


TOTAL DOCUMENTS

518
(FIVE YEARS 153)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Madhav Rao

This study examines the system integration of a game engine with robotics middleware to drive an 8 degree offreedom (DoF) robotic upper limb to generate human-like motion for telerobotic applications. The developed architectureencompasses a pipeline execution design using Blender Game Engine (BGE) including the acquisition of real humanmovements via the Microsoft Kinect V2, interfaced with a modeled virtual arm, and replication of similar arm movements on the physical robotic arm. In particular, this study emphasizes the integration of a human “pilot” with ways to drive such a robotic arm through simulation and later, into a finished system. Additionally, using motion capture technology, a human upper limb action was recorded and applied onto the robot arm using the proposed architecture flow. Also, we showcase the robotic arm’s actions which include reaching, picking, holding, and dropping an object. This paper presentsa simple and intuitive kinematic modeling and 3D simulation process, which is validated using 8-DoF articulated robot to demonstrate methods for animation, and simulation using the designed interface.


2022 ◽  
Vol 9 ◽  
Author(s):  
Martin Kessler ◽  
Roberto Rinaldi

Mechanochemistry utilizes mechanical forces to activate chemical bonds. It offers environmentally benign routes for both (bio) organic and inorganic syntheses. However, direct comparison of mechanochemistry results is often very challenging. In mechanochemical synthetic protocols, ball mill setup (mechanical design and grinding vessel geometry) in addition to experimental parameters (milling frequency, duration, ball count and size) vary broadly. This fact poses a severe issue to further progress in this exciting research area because ball mill setup and experimental parameters govern how much kinetic energy is transferred to a chemical reaction. In this work, we address the challenge of comparing mechanochemical reaction results by taking the energy dose provided by ball mills as a unified metric into account. In this quest, we applied kinematic modeling to two ball mills functioning under distinct working principles to express the energy dose as a mathematical function of the experimental parameters. By examining the effect of energy dose on the extent of the mechanocatalytic depolymerization (MCD) of lignocellulosic biomass (beechwood), we found linear correlations between yield of water-soluble products (WSP) and energy dose for both ball mills. Interestingly, when a substrate layer is formed on the grinding jar wall and/or grinding medium, a weak non-linear correlation between water-soluble products yield and energy dose is identified. We demonstrate that the chemical reaction’s best utilization of kinetic energy is achieved in the linear regime, which presents improved WSP yields for given energy doses. In the broader context, the current analysis outlines the usefulness of the energy dose as a unified metric in mechanochemistry to further the understanding of reaction results obtained from different ball mills operating under varied experimental conditions.


2022 ◽  
Vol 355 ◽  
pp. 03029
Author(s):  
Hongyang Li ◽  
Hailiang Li ◽  
Ziyi Li

Aiming at the problem of following control of autonomous vehicle, the following controller is designed based on Leader-follower strategies. First, the kinematic modeling is done. Next, Leader-follower model is used to describe the following structure and L − ϕ method is used to build error system. Then, The speed controller for the follower is designed to achieve the objectives. Finally, the simulation is done by Matlab, the results show that the controller is effective.


Author(s):  
Yixuan Kong ◽  
Shuang Song ◽  
Ning Zhang ◽  
Jiaole Wang ◽  
Bing Li

Author(s):  
Jun Zhang ◽  
Qi Liu ◽  
Jingsong Zhou ◽  
Aiguo Song

Abstract Chinese mitten crab has unique limb structures composed of a hard exoskeleton and flexible muscles. They enable the crab to locomote adaptively and safely on various terrains. In this work, we investigated the limb structures, motion principle, and gaits of the crab using a high-speed camera and a press machine. Then, a novel compliant robot leg design method is proposed, inspired by the crab limb. The leg comprises six hard scleromeres and a flexible thin-wall spring steel sheet (FSSS) mimicking the exoskeleton and muscle. The scleromeres connected one by one with rotational joints are designed with slots. The front end of the FSSS is fixed on the scleromere close to the ground. The rear end crosses the slots and is mounted at the shaft of a linear actuator installed at the rear scleromere. The leg bends and stretches when the actuator pushes and pulls the FSSS, respectively. The kinematic modeling, rigid-flexible coupling dynamic simulations, and leg prototype tests are conducted, which verify the leg design approach. Thirdly, we put forward a multi-legged robot with eight compliant legs and design its gait using the gaits of the crab. Finally, the robot’s performance is evaluated, including the capabilities of walking on different terrains at adjustable speeds and body heights, traversing low channels, walking on slopes, and carrying loads. The results prove that the single-motor-actuated compliant legs and their dynamic coupling with the rigid robot body frame can enable them to have the ground clearance ability and realize the adaptive walking of the robot. The leg design methodology can be used to design multi-legged robots with the merits of compact, light, low mechanical complexity, high safety, and easy to control, for many applications, such as environmental monitoring, search and rescue.


2021 ◽  
Vol 12 (9) ◽  
pp. s774-s793
Author(s):  
Adriana Comanescu ◽  
Alexandra Rotaru ◽  
Liviu Marian Ungureanu ◽  
Florian Ion Tiberiu Petrescu

The Stewart's leg is used today in the majority of parallel robotic systems, such as the Stewart platform, but also in many other types of mechanisms and kinematic chains, in order to operate them or to transmit motion. A special character in the study of robots is the study of inverse kinematics, with the help of which the map of the motor kinematic parameters necessary to obtain the trajectories imposed on the effector can be made. For this reason, in the proposed mechanism, we will present reverse kinematic modeling in this paper. The kinematic output parameters, ie the parameters of the foot and practically of the end effector, ie those of the point marked with T, will be determined for initiating the working algorithm with the help of logical functions, "If log(ical)", with the observation that here they play the role of input parameters; it is positioned as already specified in the inverse kinematics when the output is considered as input and the input as output. The logical functions used, as well as the entire calculation program used, were written in Math Cad.


2021 ◽  
pp. 165-170
Author(s):  
S.O. Martynov ◽  
O.O. Luchaninov ◽  
V.P. Lukyanova ◽  
M.A. Khazhmuradov ◽  
S.I. Prokhorets

Models, methods, and algorithms for three-dimensional modeling of the screw winding of the Uragan-2M torsa-tron are considered. The application of the method of kinematic modeling is substantiated as the most acceptable for obtaining solid-state and surface models of elements of a magnetic system. Methods for calculating the stresses and strains arising in the elements of the magnetic system of a screw winding under the influence of ponderomotive forces are presented, which makes it possible to determine the strength of the structural elements of the facility.


2021 ◽  
Vol 11 (22) ◽  
pp. 10591
Author(s):  
Lijun Qiao ◽  
Luo Xiao ◽  
Qingsheng Luo ◽  
Minghao Li ◽  
Jianfeng Jiang

In this paper, an optimized kinematic modeling method to accurately describe the actual structure of a mobile manipulator robot with a manipulator similar to the universal robot (UR5) is developed, and an improved self-collision detection technology realized for improving the description accuracy of each component and reducing the time required for approximating the whole robot is introduced. As the primary foundation for trajectory tracking and automatic navigation, the kinematic modeling technology of the mobile manipulator has been the subject of much interest and research for many years. However, the kinematic model established by various methods is different from the actual physical model due to the fact that researchers have mainly focused on the relationship between driving joints and the end positions while ignoring the physical structure. To improve the accuracy of the kinematic model, we present a kinematic modeling method with the addition of key points and coordinate systems to some components that failed to model the physical structure based on the classical method. Moreover, self-collision detection is also a primary problem for successfully completing the specified task of the mobile manipulator. In traditional self-collision detection technology, the description of each approximation is determined by the spatial transformation of each corresponding component in the mobile manipulator robot. Unlike the traditional technology, each approximation in the paper is directly established by the physical structure used in the kinematic modeling method, which significantly reduces the complicated analysis and shortens the required time. The numerical simulations prove that the kinematic model with the addition of key point technology is similar to the actual structure of mobile manipulator robots, and the self-collision detection technology proposed in the article effectively improves the performance of self-collision detection. Additionally, the experimental results prove that the kinematic modeling method and self-collision detection technology outlined in this paper can optimize the inverse kinematics solution.


2021 ◽  
Vol 19 (5) ◽  
pp. 420-436
Author(s):  
AJITH KUMAR R

Present technology used for soft material cutting robot are laser, water-jet, ultrasonic, plasma and oxy-gas cutting. The scope for designing and fabrication of soft material cutting robots are increasing due to its cost effectiveness and quality of cutting. Cartesian robots are mainly used in assembly and manufacturing applications. They also have a high degree of mechanical rigidity, accuracy, and repeatability. A previous work of more elementary kind was used as a skeleton model to start this work The purpose of the work is the maintenance and implementation of a 4 Degree of freedom robot and also to provide intelligence to the robot using Fuzzy logic and Neuro-Fuzzy for soft material cutting. The kinematic modeling of robot manipulator is done using Denavit-Hartenberg (D-H) parameterization method and Euler-Lagrange method is used for dynamic analysis to determine actuator torque for each joint. The image is acquired with the help of the digital camera which is fixed in a suitable position so that it can scan the entire workspace. Prewitt edge detection algorithm was used for image processing and analysis. The signal for the cutting is interfaced through the Arduino Uno r3 controller.


Sign in / Sign up

Export Citation Format

Share Document