Faster RCNN based Vehicle Detection and Counting Framework for Undisciplined Traffic Conditions

Author(s):  
Syeda Hafsa Ahmed ◽  
Mehwish Raza ◽  
Syeda Shajeeha Mehdi ◽  
Inshal Rehman ◽  
Majida Kazmi ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2686 ◽  
Author(s):  
Yue Chen ◽  
Wusheng Hu

The real-time vehicle detection and counting plays a crucial role in traffic control. To collect traffic information continuously, the access to information from traffic video shows great importance and huge advantages compared with traditional technologies. However, most current algorithms are not adapted to the effects of undesirable environments, such as sudden changes in illumination, vehicle shadows, and complex urban traffic conditions, etc. To address these problems, a new vehicle detection and counting method was proposed in this paper. Based on a real-time background model, the problem of sudden illumination changes could be solved, while the vehicle shadows could be removed using a detection method based on motion. The vehicle counting was built on two types of ROIs—called Normative-Lane and Non-Normative-Lane—which could adapt to the complex urban traffic conditions, especially for non-normative driving. Results have shown that the methodology we proposed is able to count vehicles with 99.93% accuracy under the undesirable environments mentioned above. At the same time, the setting of the Normative-Lane and the Non-Normative-Lane can realize the detection of non-normative driving, and it is of great significance to improve the counting accuracy.


2013 ◽  
Vol 59 (5) ◽  
pp. 541 ◽  
Author(s):  
PradeepKumar Mishra ◽  
Ajay Nandoriya ◽  
Subhasis Chaudhuri ◽  
Mohamed Athiq

Author(s):  
Anan Banharnsakun ◽  
Supannee Tanathong

Purpose Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking. Especially in a traffic video monitoring system, vehicle detection is an essential and challenging task. In the previous studies, many vehicle detection methods have been presented. These proposed approaches mostly used either motion information or characteristic information to detect vehicles. Although these methods are effective in detecting vehicles, their detection accuracy still needs to be improved. Moreover, the headlights and windshields, which are used as the vehicle features for detection in these methods, are easily obscured in some traffic conditions. The paper aims to discuss these issues. Design/methodology/approach First, each frame will be captured from a video sequence and then the background subtraction is performed by using the Mixture-of-Gaussians background model. Next, the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest in each foreground scene and the hierarchical clustering approach is then applied to cluster and form them into feature blocks. These feature blocks will be used to track the moving objects frame by frame. Findings Using the proposed method, it is possible to detect the vehicles in both day-time and night-time scenarios with a 95 percent accuracy rate and can cope with irrelevant movement (waving trees), which has to be deemed as background. In addition, the proposed method is able to deal with different vehicle shapes such as cars, vans, and motorcycles. Originality/value This paper presents a hierarchical clustering of features approach for multiple vehicles tracking in traffic environments to improve the capability of detection and tracking in case that the vehicle features are obscured in some traffic conditions.


Sign in / Sign up

Export Citation Format

Share Document