A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques

Author(s):  
Hafed Zarzour ◽  
Ziad Al-Sharif ◽  
Mahmoud Al-Ayyoub ◽  
Yaser Jararweh
2020 ◽  
Vol 14 ◽  
Author(s):  
Amreen Ahmad ◽  
Tanvir Ahmad ◽  
Ishita Tripathi

: The immense growth of information has led to the wide usage of recommender systems for retrieving relevant information. One of the widely used methods for recommendation is collaborative filtering. However, such methods suffer from two problems, scalability and sparsity. In the proposed research, the two issues of collaborative filtering are addressed and a cluster-based recommender system is proposed. For the identification of potential clusters from the underlying network, Shapley value concept is used, which divides users into different clusters. After that, the recommendation algorithm is performed in every respective cluster. The proposed system recommends an item to a specific user based on the ratings of the item’s different attributes. Thus, it reduces the running time of the overall algorithm, since it avoids the overhead of computation involved when the algorithm is executed over the entire dataset. Besides, the security of the recommender system is one of the major concerns nowadays. Attackers can come in the form of ordinary users and introduce bias in the system to force the system function that is advantageous for them. In this paper, we identify different attack models that could hamper the security of the proposed cluster-based recommender system. The efficiency of the proposed research is validated by conducting experiments on student dataset.


2013 ◽  
Vol 756-759 ◽  
pp. 3899-3903
Author(s):  
Ping Sun ◽  
Zheng Yu Li ◽  
Zi Yang Han ◽  
Feng Ying Wang

Recommendation algorithm is the most core and key point in recommender systems, and plays a decisive role in type and performance evaluation. At present collaborative filtering recommendation not only is the most widely useful and successful recommend technology, but also is a promotion for the study of the whole recommender systems. The research on the recommender systems is coming into a focus and critical problem at home and abroad. Firstly, the latest development and research in the collaborative filtering recommendation algorithm are introduced. Secondly, the primary idea and difficulties faced with the algorithm are explained in detail. Some classical solutions are used to deal with the problems such as data sparseness, cold start and augmentability. Thirdly, the particular evaluation method of the algorithm is put forward and the developments of collaborative filtering algorithm are prospected.


Sign in / Sign up

Export Citation Format

Share Document