scholarly journals Trajectory Tracking Control Design for Dual-Arm Robots Using Dynamic Surface Controller

Author(s):  
Huu Nguyen Thai ◽  
Anh Tuan Phan ◽  
Cong Khoa Nguyen ◽  
Quang Uoc Ngo ◽  
Phong Tuyen Dinh ◽  
...  
2020 ◽  
Vol 24 (3) ◽  
pp. 159-168
Author(s):  
Anh Tuan Phan ◽  
Huu Nguyen Thai ◽  
Cong Khoa Nguyen ◽  
Quang Uoc Ngo ◽  
Hoai Anh Duong ◽  
...  

2020 ◽  
Vol 42 (15) ◽  
pp. 2956-2968
Author(s):  
Bo Li ◽  
Hanyu Ban ◽  
Wenquan Gong ◽  
Bing Xiao

This work presents a novel control strategy for the trajectory tracking control of the quadrotor unmanned aerial vehicle (UAV) with parameter uncertainties and external unknown disturbances. As a stepping stone, two fixed-time extended state observers (ESOs) are proposed to estimate the external disturbances and/or the parameter uncertainties for the position and attitude subsystems, respectively. Then, the fast terminal sliding mode-based improved dynamic surface control (DSC) approaches are developed. To eliminate the problem of “explosion of complexity” inherent in backstepping method-based controllers, the finite-time command filters and an error compensation signals are used in the design of the dynamic surface controllers. Subsequently, the practically finite-time stability of the closed-loop tracking system is guaranteed by utilizing the proposed control scheme. The simulation results are obtained to demonstrate the effectiveness and fine performance of the proposed trajectory tracking control approaches.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 235
Author(s):  
Francisco Beltran-Carbajal ◽  
Hugo Yañez-Badillo ◽  
Ruben Tapia-Olvera ◽  
Antonio Favela-Contreras ◽  
Antonio Valderrabano-Gonzalez ◽  
...  

Conventional dynamic vibration absorbers are physical control devices designed to be coupled to flexible mechanical structures to be protected against undesirable forced vibrations. In this article, an approach to extend the capabilities of forced vibration suppression of the dynamic vibration absorbers into desired motion trajectory tracking control algorithms for a four-rotor unmanned aerial vehicle (UAV) is introduced. Nevertheless, additional physical control devices for mechanical vibration absorption are unnecessary in the proposed motion profile reference tracking control design perspective. A new dynamic control design approach for efficient tracking of desired motion profiles as well as for simultaneous active harmonic vibration absorption for a quadrotor helicopter is then proposed. In contrast to other control design methods, the presented motion tracking control scheme is based on the synthesis of multiple virtual (nonphysical) dynamic vibration absorbers. The mathematical structure of these physical mechanical devices, known as dynamic vibration absorbers, is properly exploited and extended for control synthesis for underactuated multiple-input multiple-output four-rotor nonlinear aerial dynamic systems. In this fashion, additional capabilities of active suppression of vibrating forces and torques can be achieved in specified motion directions on four-rotor helicopters. Moreover, since the dynamic vibration absorbers are designed to be virtual, these can be directly tuned for diverse operating conditions. In the present study, it is thus demonstrated that the mathematical structure of physical mechanical vibration absorbers can be extended for the design of active vibration control schemes for desired motion trajectory tracking tasks on four-rotor aerial vehicles subjected to adverse harmonic disturbances. The effectiveness of the presented novel design perspective of virtual dynamic vibration absorption schemes is proved by analytical and numerical results. Several operating case studies to stress the advantages to extend the undesirable vibration attenuation capabilities of the dynamic vibration absorbers into trajectory tracking control algorithms for nonlinear four-rotor helicopter systems are presented.


Sign in / Sign up

Export Citation Format

Share Document