dynamic surface control
Recently Published Documents


TOTAL DOCUMENTS

704
(FIVE YEARS 219)

H-INDEX

50
(FIVE YEARS 12)

Author(s):  
Bai Zhiye ◽  
Li Shenggang ◽  
Liu Heng

This article proposes an adaptive neural output feedback control scheme in combination with state and disturbance observers for uncertain fractional-order nonlinear systems containing unknown external disturbance, input saturation and immeasurable state. The radial basis function neural network (RBFNN) approximation is used to estimate unknown nonlinear function, and a state observer as well as a fractional-order disturbance observer is developed simultaneously by using the approximation output of the RBFNN to estimate immeasurable states and unknown compounded disturbances, respectively. Then, a fractional-order auxiliary system is constructed to compensate the effects caused by the saturated input. In addition, by introducing a dynamic surface control strategy, the tedious analytic computation of time derivatives of virtual control laws in the conventional backstepping method is avoided. The proposed method guarantees that the boundness of all signals in the closed loop system and the tracking errors converge to a small neighbourhood around the origin. Finally, two examples are provided to verify the effectiveness of the proposed control method.


Author(s):  
Sijia Song ◽  
Jinpeng Yu ◽  
Lin Zhao ◽  
Guozeng Cui

In this paper, a finite-time adaptive fuzzy dynamic surface control (DSC) method is proposed for the position tracking control of permanent magnet synchronous motors (PMSMs) stochastic nonlinear system with input constraint and load disturbance. First, the stochastic disturbance of PMSMs is considered in operation, and the fuzzy control method is applied to cope with the stochastic nonlinear function in the motor model. Second, the DSC technique is applied to avoid the “explosion of complexity” in the backstepping design. Moreover, the finite-time control is applied to the stochastic nonlinear system of PMSMs to improve the convergence speed of the system, tracking accuracy, and anti-interference ability. Conclusive, simulation results are given to verify the method that can achieve fast tracking of the desired signal.


2022 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Jiqiang Li ◽  
Guoqing Zhang ◽  
Bo Li

Around the cooperative path-following control for the underactuated surface vessel (USV) and the unmanned aerial vehicle (UAV), a logic virtual ship-logic virtual aircraft (LVS-LVA) guidance principle is developed to generate the reference heading signals for the USV-UAV system by using the “virtual ship” and the “virtual aircraft”, which is critical to establish an effective correlation between the USV and the UAV. Taking the steerable variables (the main engine speed and the rudder angle of the USV, and the rotor angular velocities of the UAV) as the control input, a robust adaptive neural cooperative control algorithm was designed by employing the dynamic surface control (DSC), radial basic function neural networks (RBF-NNs) and the event-triggered technique. In the proposed algorithm, the reference roll angle and pitch angle for the UAV can be calculated from the position control loop by virtue of the nonlinear decouple technique. In addition, the system uncertainties were approximated through the RBF-NNs and the transmission burden from the controller to the actuators was reduced for merits of the event-triggered technique. Thus, the derived control law is superior in terms of the concise form, low transmission burden and robustness. Furthermore, the tracking errors of the USV-UAV cooperative control system can converge to a small compact set through adjusting the designed control parameters appropriately, and it can be also guaranteed that all the signals are the semi-global uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the proposed algorithm has been verified via numerical simulations in the presence of the time-varying disturbances.


Author(s):  
Ly Tong Thi ◽  
Trong Dang Van ◽  
Bach Nguyen Nhu ◽  
Hung Pham Van ◽  
Duc Duong Minh ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2284
Author(s):  
Xuemiao Chen ◽  
Ziwen Wu ◽  
Jing Li ◽  
Qianjin Zhao

In this paper, for a class of uncertain stochastic nonlinear systems with input time-varying delays, an adaptive neural dynamic surface control (DSC) method is proposed. To approximate the unknown continuous functions online, the neural network approximation technique was applied, and based on the DSC scheme, the desired controller was constructed. A compensation system is presented to compensate for the effect of the input delay. The Lyapunov–Krasovskii functionals (LKFs) were employed to compensate for the effect of the state delay. Compared with the existing works, based on using the DSC scheme with the nonlinear filter and stochastic Barbalat’s lemma, the asymptotic regulation performance of this closed-loop system can be guaranteed under the developed controller. To certify the availability for the designed control method, some simulation results are presented.


Sign in / Sign up

Export Citation Format

Share Document