skid steering
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Xing Zhang ◽  
Weiya Pei ◽  
Xufeng Yin ◽  
Shihua Yuan

With the increasing demand of military and civilian in the intelligent vehicles, the skid-steering theory has been widely used in unmanned ground vehicles, especially in unmanned military vehicles and unmanned surveillance platforms. Due to its driving environment complex and variable, which requires stricter dynamic control system. In order to improve the active safety performance of the skid-steering unmanned vehicle and develop the key technologies such as behavior decision planning technology, path tracking, and dynamic control technology, it is necessary to develop the dynamic state parameter observation system based on skid-steering theory. In this paper, an observation using Strong Track External Kalman Filter theory with noise matrix adaptive is designed to estimate vehicle kinematic parameters based on a 6 × 6 skid-steered unmanned vehicle. First, kinematic and dynamic model is built to analyze the characters of a skid-steered wheeled vehicle. Then a tire force estimation method based on dynamic model is presented to observe the tire longitude and vertical force. The tire force data is also used by Dugoff nonlinear model. Then an External Kalman Filter theory is designed to estimate vehicle kinematic parameters. To increase the accuracy and the robustness of the observer, the Strong Tracking EKF (STEKF) and noise adaptive adjustment is designed. Finally, a combined simulation using TruckSim and Simulink and the experiment using a 6 × 6 skid-steered unmanned vehicle verifies the efficiency of the observer. Results show that the observer is able to estimate the skid-steered wheeled vehicle states, and it also shows that the yaw rate result in the slip angle difference between each tire.


Machines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Antonio Tota ◽  
Enrico Galvagno ◽  
Mauro Velardocchia

Articulated tracked vehicles have been traditionally studied and appreciated for the extreme maneuverability and mobility flexibility in terms of grade and side slope capabilities. The articulation joint represents an attractive and advantageous solution, if compared to the traditional skid steering operation, by avoiding any trust adjustment between the outside and inside tracks. This paper focuses on the analysis and control of an articulated tracked vehicle characterized by two units connected through a mechanical multiaxial joint that is hydraulically actuated to allow the articulated steering operation. A realistic eight degrees of freedom mathematical model is introduced to include the main nonlinearities involved in the articulated steering behavior. A linearized vehicle model is further proposed to analytically characterize the cornering steady-state and transient behaviors for small lateral accelerations. Finally, a hitch angle controller is designed by proposing a torque-based and a speed-based Proportional Integral Derivative (PID) logics. The controller is also verified by simulating maneuvers typically adopted for handling analysis.


2021 ◽  
Vol 11 (3) ◽  
pp. 961
Author(s):  
Hui Zhang ◽  
Huawei Liang ◽  
Xiang Tao ◽  
Yi Ding ◽  
Biao Yu ◽  
...  

In this paper, a hierarchical driving force distribution and control strategy for a six-wheel drive (6WD) skid-steering electric unmanned ground vehicle (EUGV) with independent drive motors is presented to improve the vehicle maneuverability and stability. The proposed hierarchical strategy is based on a nine-degrees-of-freedom (DOFs) dynamics model of 6WD skid-steering EUGV with a vehicle system dynamics model, wheel dynamics model, and tire model. In the proposed hierarchical strategy, the upper layer controller calculates the resultant driving force and yaw moment to control the vehicle motion states to track the desired ones by using the integral sliding mode control (ISMC) and proportion–integral–differential (PID) control methods. In the lower layer controllers, the driving force distribution method is adopted to allocate torques to the six motors. An objective function is proposed and composed of the longitudinal tire workload rates and weighting factors, considering the inequality constraints and equality constraints, which is solved by using the active set method. In order to evaluate the effectiveness of the proposed method, experiments with two types of scenarios were conducted. Comparative studies were also conducted with the other two methods used in the literature. The experimental results show that better performance can be achieved with the proposed control strategy in vehicle maneuverability and stability.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rameez Khan ◽  
Fahad Mumtaz Malik ◽  
Abid Raza ◽  
Naveed Mazhar

Purpose The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control, guidance and navigation for the researchers who wish to study in this field. Design/methodology/approach Most of the contemporary unmanned ground robot’s locomotion is based upon the wheels. For wheeled mobile robots (WMRs), one of the prominent and widely used driving schemes is skid steering. Because of mechanical simplicity and high maneuverability particularly in outdoor applications, SSWMR has an advantage over its counterparts. Different prospects of SSWMR have been discussed including its design, application, locomotion, control, navigation and guidance. The challenges pertaining to SSWMR have been pointed out in detail, which will seek the attention of the readers, who are interested to explore this area. Findings Relying on the recent literature on SSWMR, research gaps are identified that should be analyzed for the development of autonomous skid-steer wheeled robots. Originality/value An attempt to present a comprehensive review of recent advancements in the field of WMRs and providing references to the most intriguing studies.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1540-1547
Author(s):  
Yun Ling ◽  
Jian Wu ◽  
ZhanQiang Lyu ◽  
Pengwen Xiong

Tracking control, which is applied to the target mobile robots in the process of rushing toward the trainees, is one of the critical technologies in the advancement of anti-terrorist training. Considering the disadvantages of various types of traditional tracking methods, this paper proposes a novel laser ray tracking mechanism and a backstepping controller for the target mobile robot that is used in shooting ranges. The mechanism and principle of the laser ray tracking is illustrated in detail. Based on the unique structure, the light intensity distributions are measured to further locate the laser spots on the cut-ray boards. Then, the relationship between the positions of the laser spots on the cut-ray boards and the pose of the target mobile robot is demonstrated. According to the features of the tracking situation, a backstepping controller is designed to achieve the laser ray tracking. After that, the inverse kinematics of the wheeled skid-steering mobile robot is analyzed to map the linear and angular velocities of the robot to the velocities of its left wheels and right wheels. The conventional proportional–integral–derivative controller is applied in the experiments to compare with the proposed backstepping controller. The experimental results show that the proposed controller is more robust, and converges faster for the laser ray tracking.


Author(s):  
Dominic Baril ◽  
Vincent Grondin ◽  
Simon-Pierre Deschenes ◽  
Johann Laconte ◽  
Maxime Vaidis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document