Speech emotion recognition via a max-margin framework incorporating a loss function based on the Watson and Tellegen's emotion model

Author(s):  
Sungrack Yun ◽  
Chang D. Yoo
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4233
Author(s):  
Bogdan Mocanu ◽  
Ruxandra Tapu ◽  
Titus Zaharia

Emotion is a form of high-level paralinguistic information that is intrinsically conveyed by human speech. Automatic speech emotion recognition is an essential challenge for various applications; including mental disease diagnosis; audio surveillance; human behavior understanding; e-learning and human–machine/robot interaction. In this paper, we introduce a novel speech emotion recognition method, based on the Squeeze and Excitation ResNet (SE-ResNet) model and fed with spectrogram inputs. In order to overcome the limitations of the state-of-the-art techniques, which fail in providing a robust feature representation at the utterance level, the CNN architecture is extended with a trainable discriminative GhostVLAD clustering layer that aggregates the audio features into compact, single-utterance vector representation. In addition, an end-to-end neural embedding approach is introduced, based on an emotionally constrained triplet loss function. The loss function integrates the relations between the various emotional patterns and thus improves the latent space data representation. The proposed methodology achieves 83.35% and 64.92% global accuracy rates on the RAVDESS and CREMA-D publicly available datasets, respectively. When compared with the results provided by human observers, the gains in global accuracy scores are superior to 24%. Finally, the objective comparative evaluation with state-of-the-art techniques demonstrates accuracy gains of more than 3%.


Author(s):  
Biqiao Zhang ◽  
Yuqing Kong ◽  
Georg Essl ◽  
Emily Mower Provost

In this paper, we propose a Deep Metric Learning (DML) approach that supports soft labels. DML seeks to learn representations that encode the similarity between examples through deep neural networks. DML generally presupposes that data can be divided into discrete classes using hard labels. However, some tasks, such as our exemplary domain of speech emotion recognition (SER), work with inherently subjective data, data for which it may not be possible to identify a single hard label. We propose a family of loss functions, fSimilarity Preservation Loss (f-SPL), based on the dual form of f-divergence for DML with soft labels. We show that the minimizer of f-SPL preserves the pairwise label similarities in the learned feature embeddings. We demonstrate the efficacy of the proposed loss function on the task of cross-corpus SER with soft labels. Our approach, which combines f-SPL and classification loss, significantly outperforms a baseline SER system with the same structure but trained with only classification loss in most experiments. We show that the presented techniques are more robust to over-training and can learn an embedding space in which the similarity between examples is meaningful.


2015 ◽  
Vol 15 (4) ◽  
pp. 50-57 ◽  
Author(s):  
Jiang Zhipeng ◽  
Huang Chengwei

Abstract In this paper we study the cross-language speech emotion recognition using high-order Markov random fields, especially the application in Vietnamese speech emotion recognition. First, we extract the basic speech features including pitch frequency, formant frequency and short-term intensity. Based on the low level descriptor we further construct the statistic features including maximum, minimum, mean and standard deviation. Second, we adopt the high-order Markov random fields (MRF) to optimize the cross-language speech emotion model. The dimensional restrictions may be modeled by MRF. Third, based on the Vietnamese and Chinese database we analyze the efficiency of our emotion recognition system. We adopt the dimensional emotion model (arousal-valence) to verify the efficiency of MRF configuration method. The experimental results show that the high-order Markov random fields can improve the dimensional emotion recognition in the cross-language experiments, and the configuration method shows promising robustness over different languages.


2013 ◽  
Vol 38 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Jingjie Yan ◽  
Xiaolan Wang ◽  
Weiyi Gu ◽  
LiLi Ma

Abstract Speech emotion recognition is deemed to be a meaningful and intractable issue among a number of do- mains comprising sentiment analysis, computer science, pedagogy, and so on. In this study, we investigate speech emotion recognition based on sparse partial least squares regression (SPLSR) approach in depth. We make use of the sparse partial least squares regression method to implement the feature selection and dimensionality reduction on the whole acquired speech emotion features. By the means of exploiting the SPLSR method, the component parts of those redundant and meaningless speech emotion features are lessened to zero while those serviceable and informative speech emotion features are maintained and selected to the following classification step. A number of tests on Berlin database reveal that the recogni- tion rate of the SPLSR method can reach up to 79.23% and is superior to other compared dimensionality reduction methods.


Sign in / Sign up

Export Citation Format

Share Document