scholarly journals Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4233
Author(s):  
Bogdan Mocanu ◽  
Ruxandra Tapu ◽  
Titus Zaharia

Emotion is a form of high-level paralinguistic information that is intrinsically conveyed by human speech. Automatic speech emotion recognition is an essential challenge for various applications; including mental disease diagnosis; audio surveillance; human behavior understanding; e-learning and human–machine/robot interaction. In this paper, we introduce a novel speech emotion recognition method, based on the Squeeze and Excitation ResNet (SE-ResNet) model and fed with spectrogram inputs. In order to overcome the limitations of the state-of-the-art techniques, which fail in providing a robust feature representation at the utterance level, the CNN architecture is extended with a trainable discriminative GhostVLAD clustering layer that aggregates the audio features into compact, single-utterance vector representation. In addition, an end-to-end neural embedding approach is introduced, based on an emotionally constrained triplet loss function. The loss function integrates the relations between the various emotional patterns and thus improves the latent space data representation. The proposed methodology achieves 83.35% and 64.92% global accuracy rates on the RAVDESS and CREMA-D publicly available datasets, respectively. When compared with the results provided by human observers, the gains in global accuracy scores are superior to 24%. Finally, the objective comparative evaluation with state-of-the-art techniques demonstrates accuracy gains of more than 3%.

Computation ◽  
2017 ◽  
Vol 5 (4) ◽  
pp. 26 ◽  
Author(s):  
Michalis Papakostas ◽  
Evaggelos Spyrou ◽  
Theodoros Giannakopoulos ◽  
Giorgos Siantikos ◽  
Dimitrios Sgouropoulos ◽  
...  

2020 ◽  
Vol 34 (01) ◽  
pp. 303-311 ◽  
Author(s):  
Sicheng Zhao ◽  
Yunsheng Ma ◽  
Yang Gu ◽  
Jufeng Yang ◽  
Tengfei Xing ◽  
...  

Emotion recognition in user-generated videos plays an important role in human-centered computing. Existing methods mainly employ traditional two-stage shallow pipeline, i.e. extracting visual and/or audio features and training classifiers. In this paper, we propose to recognize video emotions in an end-to-end manner based on convolutional neural networks (CNNs). Specifically, we develop a deep Visual-Audio Attention Network (VAANet), a novel architecture that integrates spatial, channel-wise, and temporal attentions into a visual 3D CNN and temporal attentions into an audio 2D CNN. Further, we design a special classification loss, i.e. polarity-consistent cross-entropy loss, based on the polarity-emotion hierarchy constraint to guide the attention generation. Extensive experiments conducted on the challenging VideoEmotion-8 and Ekman-6 datasets demonstrate that the proposed VAANet outperforms the state-of-the-art approaches for video emotion recognition. Our source code is released at: https://github.com/maysonma/VAANet.


Author(s):  
Duowei Tang ◽  
Peter Kuppens ◽  
Luc Geurts ◽  
Toon van Waterschoot

AbstractAmongst the various characteristics of a speech signal, the expression of emotion is one of the characteristics that exhibits the slowest temporal dynamics. Hence, a performant speech emotion recognition (SER) system requires a predictive model that is capable of learning sufficiently long temporal dependencies in the analysed speech signal. Therefore, in this work, we propose a novel end-to-end neural network architecture based on the concept of dilated causal convolution with context stacking. Firstly, the proposed model consists only of parallelisable layers and is hence suitable for parallel processing, while avoiding the inherent lack of parallelisability occurring with recurrent neural network (RNN) layers. Secondly, the design of a dedicated dilated causal convolution block allows the model to have a receptive field as large as the input sequence length, while maintaining a reasonably low computational cost. Thirdly, by introducing a context stacking structure, the proposed model is capable of exploiting long-term temporal dependencies hence providing an alternative to the use of RNN layers. We evaluate the proposed model in SER regression and classification tasks and provide a comparison with a state-of-the-art end-to-end SER model. Experimental results indicate that the proposed model requires only 1/3 of the number of model parameters used in the state-of-the-art model, while also significantly improving SER performance. Further experiments are reported to understand the impact of using various types of input representations (i.e. raw audio samples vs log mel-spectrograms) and to illustrate the benefits of an end-to-end approach over the use of hand-crafted audio features. Moreover, we show that the proposed model can efficiently learn intermediate embeddings preserving speech emotion information.


Author(s):  
Biqiao Zhang ◽  
Yuqing Kong ◽  
Georg Essl ◽  
Emily Mower Provost

In this paper, we propose a Deep Metric Learning (DML) approach that supports soft labels. DML seeks to learn representations that encode the similarity between examples through deep neural networks. DML generally presupposes that data can be divided into discrete classes using hard labels. However, some tasks, such as our exemplary domain of speech emotion recognition (SER), work with inherently subjective data, data for which it may not be possible to identify a single hard label. We propose a family of loss functions, fSimilarity Preservation Loss (f-SPL), based on the dual form of f-divergence for DML with soft labels. We show that the minimizer of f-SPL preserves the pairwise label similarities in the learned feature embeddings. We demonstrate the efficacy of the proposed loss function on the task of cross-corpus SER with soft labels. Our approach, which combines f-SPL and classification loss, significantly outperforms a baseline SER system with the same structure but trained with only classification loss in most experiments. We show that the presented techniques are more robust to over-training and can learn an embedding space in which the similarity between examples is meaningful.


Author(s):  
Jonathan Boigne ◽  
Biman Liyanage ◽  
Ted Östrem

We propose a novel transfer learning method for speech emotion recognition allowing us to obtain promising results when only few training data is available. With as low as 125 examples per emotion class, we were able to reach a higher accuracy than a strong baseline trained on 8 times more data. Our method leverages knowledge contained in pre-trained speech representations extracted from models trained on a more general self-supervised task which doesn’t require human annotations, such as the wav2vec model. We provide detailed insights on the benefits of our approach by varying the training data size, which can help labeling teams to work more efficiently. We compare performance with other popular methods on the IEMOCAP dataset, a well-benchmarked dataset among the Speech Emotion Recognition (SER) research community. Furthermore, we demonstrate that results can be greatly improved by combining acoustic and linguistic knowledge from transfer learning. We align acoustic pre-trained representations with semantic representations from the BERT model through an attention-based recurrent neural network. Performance improves significantly when combining both modalities and scales with the amount of data. When trained on the full IEMOCAP dataset, we reach a new state-of-the-art of 73.9% unweighted accuracy (UA).


2019 ◽  
Vol 13 (5) ◽  
pp. 867-870
Author(s):  
Aisultan, Kanat, Nazerke, Rakhima Shoiynbek, Kozhakhmet, Sultanova, Zhumaliyeva

Sign in / Sign up

Export Citation Format

Share Document