Time Series Prediction for Kernel-based Adaptive Filters Using Variable Bandwidth, Adaptive Learning-rate, and Dimensionality Reduction

Author(s):  
S. Garcia-Vega ◽  
E. A. Leon-Gomez ◽  
G. Castellanos-Dominguez
Author(s):  
Mr. Dhanaji Vilas Mirajkar

Artificial neural network (ANN) mainly consists of learning algorithms, which are require to optimize the convergence of neural networks. We need to optimize the convergence of neural networks in order to improve the speed and accuracy of decision making process. To enable the optimization process one of the widely used algorithm is back propagation learning algorithm. Objective of study is to applied backpropagation algorithm for solving multivariate time series problem. To better the accuracy of neural network it is important to find optimized architecture for the problem under consideration. The learning rate is also an important factor which affects the performance of result. In this study, we proposed extended adaptive learning approach in which learning rate is adapted from number of previous iteration error trend in first half of training. In next half of training learning rate is adapted as per adaptive learning rate algorithm. Compare performance of three variation of backpropagationalgorithm. All these variation experimented on two standard dataset. Experimental result shows that during validation and training ANN with extended adaptive learning rate outperforms other than two variations.


Author(s):  
Vakada Naveen ◽  
Yaswanth Mareedu ◽  
Neeharika Sai Mandava ◽  
Sravya Kaveti ◽  
G. Krishna Kishore

2018 ◽  
Vol 26 (8) ◽  
pp. 2100-2111 ◽  
Author(s):  
刘教民 LIU Jiao-min ◽  
郭剑威 GUO Jian-wei ◽  
师 硕 SHI Shuo

Author(s):  
Tong Gao ◽  
Wei Sheng ◽  
Mingliang Zhou ◽  
Bin Fang ◽  
Liping Zheng

In this paper, we propose a novel fault diagnosis (FD) approach for micro-electromechanical systems (MEMS) inertial sensors that recognize the fault patterns of MEMS inertial sensors in an end-to-end manner. We use a convolutional neural network (CNN)-based data-driven method to classify the temperature-related sensor faults in unmanned aerial vehicles (UAVs). First, we formulate the FD problem for MEMS inertial sensors into a deep learning framework. Second, we design a multi-scale CNN which uses the raw data of MEMS inertial sensors as input and which outputs classification results indicating faults. Then we extract fault features in the temperature domain to solve the non-uniform sampling problem. Finally, we propose an improved adaptive learning rate optimization method which accelerates the loss convergence by using the Kalman filter (KF) to train the network efficiently with a small dataset. Our experimental results show that our method achieved high fault recognition accuracy and that our proposed adaptive learning rate method improved performance in terms of loss convergence and robustness on a small training batch.


Sign in / Sign up

Export Citation Format

Share Document