Constrained Tensor Decomposition for 2d DOA Estimation In Transmit Beamspace Mimo Radar with Subarrays

Author(s):  
Feng Xu ◽  
Sergiy A. Vorobyov
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Guimei Zheng ◽  
Jun Tang

We study two-dimensional direction of arrival (2D-DOA) estimation problem of monostatic MIMO radar with the receiving array which consists of electromagnetic vector sensors (EMVSs). The proposed angle estimation algorithm can be applied to the arbitrary and unknown array configuration, which can be summarized as follows. Firstly, EMVSs in the receiver of a monostatic MIMO radar are used to measure all six electromagnetic-field components of an incident wavefield. The vector sensor array with the six unknown electromagnetic-field components is divided into six spatially identical subarrays. Secondly, ESPRIT is utilized to estimate the rotational invariant factors (RIFs). Parts of the RIFs are picked up to restore the source’s electromagnetic-field vector. Last, a vector cross product operation is performed between electric field and magnetic field to obtain the Pointing vector, which can offer the 2D-DOA estimation. Prior knowledge of array elements’ positions and angle searching procedure are not necessary for the proposed 2D-DOA estimation method. Simulation results prove the validity of the proposed method.


2017 ◽  
Vol 65 (19) ◽  
pp. 5225-5239 ◽  
Author(s):  
Ming-Yang Cao ◽  
Sergiy A. Vorobyov ◽  
Aboulnasr Hassanien

2014 ◽  
Vol 926-930 ◽  
pp. 2871-2875
Author(s):  
Ying Li ◽  
Gong Zhang

This paper discussed the problem of two dimensional (2D) direction of arrival (DOA) estimation for multi-input multi-output (MIMO) radar. The minimum-redundancy linear array (MLRA) is introduced into the transmitting array and receiving array, which enables the high efficiency of the radar system. By utilizing the algorithm of multiple signal classification (MUSIC), we illustrate that the proposed scheme performs better than the uniform linear arrays (ULA) configuration under the same conditions. Simulation results verify the effectiveness of our scheme.


Sign in / Sign up

Export Citation Format

Share Document