Opportunistic Channel Sharing Based on Primary User Transition Probabilities in Dual Mode Cognitive Radio Networks

Author(s):  
S. Senthuran ◽  
A. Anpalagan ◽  
O. Das ◽  
H.-Y. Kong

Cognitive Radio Networks (CRN) is the upcoming future prospect in 5G networks. Lack of available spectrum is a serious problem in the networking industry nowadays since, for each individual organization only a limited spectrum bandwidth is offered by National Telecommunications and Information Administration (NTIA). The problem arises due to the increase in the number of users who are supposed to use a limited amount of available bandwidth. Using spectrum handoff allows a cognitive user to access the available licensed spectrum in the absence of the primary user in that particular channel. Efficient spectrum sensing has to be done to check the availability of unused spectrum holes. Machine learning models such as Markov model and Hidden Markov model are used to predict the probabilities. In this paper we have presented a model for efficient sensing using Baum-Welch algorithm, a neural network algorithm which can train inner layer channel traits for given sequence of switching services to yield accurate results without huge datasets. Following emission probabilities are obtained for the channels that are trained from transition probabilities of channel services such as video, voice and data. From the obtained probability values each channel can be offered with best suited services.


2021 ◽  
Author(s):  
Olusegun Peter Awe ◽  
Daniel Adebowale Babatunde ◽  
Sangarapillai Lambotharan ◽  
Basil AsSadhan

AbstractWe address the problem of spectrum sensing in decentralized cognitive radio networks using a parametric machine learning method. In particular, to mitigate sensing performance degradation due to the mobility of the secondary users (SUs) in the presence of scatterers, we propose and investigate a classifier that uses a pilot based second order Kalman filter tracker for estimating the slowly varying channel gain between the primary user (PU) transmitter and the mobile SUs. Using the energy measurements at SU terminals as feature vectors, the algorithm is initialized by a K-means clustering algorithm with two centroids corresponding to the active and inactive status of PU transmitter. Under mobility, the centroid corresponding to the active PU status is adapted according to the estimates of the channels given by the Kalman filter and an adaptive K-means clustering technique is used to make classification decisions on the PU activity. Furthermore, to address the possibility that the SU receiver might experience location dependent co-channel interference, we have proposed a quadratic polynomial regression algorithm for estimating the noise plus interference power in the presence of mobility which can be used for adapting the centroid corresponding to inactive PU status. Simulation results demonstrate the efficacy of the proposed algorithm.


2017 ◽  
Vol 30 (18) ◽  
pp. e3371 ◽  
Author(s):  
Kuldeep Yadav ◽  
Binod Prasad ◽  
Abhijit Bhowmick ◽  
Sanjay Dhar Roy ◽  
Sumit Kundu

Sign in / Sign up

Export Citation Format

Share Document