Answer Extraction with Graph Attention Network for Knowledge Graph Question Answering

Author(s):  
Jie Zhang ◽  
Zhongmin Pei ◽  
Wei Xiong ◽  
Zhangkai Luo
2020 ◽  
Vol 32 (18) ◽  
pp. 14963-14973
Author(s):  
Meina Song ◽  
Wen Zhao ◽  
E. HaiHong

Abstract Natural language inference (NLI) is the basic task of many applications such as question answering and paraphrase recognition. Existing methods have solved the key issue of how the NLI model can benefit from external knowledge. Inspired by this, we attempt to further explore the following two problems: (1) how to make better use of external knowledge when the total amount of such knowledge is constant and (2) how to bring external knowledge to the NLI model more conveniently in the application scenario. In this paper, we propose a novel joint training framework that consists of a modified graph attention network, called the knowledge graph attention network, and an NLI model. We demonstrate that the proposed method outperforms the existing method which introduces external knowledge, and we improve the performance of multiple NLI models without additional external knowledge.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 20840-20849
Author(s):  
Xiyang Liu ◽  
Huobin Tan ◽  
Qinghong Chen ◽  
Guangyan Lin

Author(s):  
Xinmeng Li ◽  
Mamoun Alazab ◽  
Qian Li ◽  
Keping Yu ◽  
Quanjun Yin

AbstractKnowledge graph question answering is an important technology in intelligent human–robot interaction, which aims at automatically giving answer to human natural language question with the given knowledge graph. For the multi-relation question with higher variety and complexity, the tokens of the question have different priority for the triples selection in the reasoning steps. Most existing models take the question as a whole and ignore the priority information in it. To solve this problem, we propose question-aware memory network for multi-hop question answering, named QA2MN, to update the attention on question timely in the reasoning process. In addition, we incorporate graph context information into knowledge graph embedding model to increase the ability to represent entities and relations. We use it to initialize the QA2MN model and fine-tune it in the training process. We evaluate QA2MN on PathQuestion and WorldCup2014, two representative datasets for complex multi-hop question answering. The result demonstrates that QA2MN achieves state-of-the-art Hits@1 accuracy on the two datasets, which validates the effectiveness of our model.


Author(s):  
Lianli Gao ◽  
Pengpeng Zeng ◽  
Jingkuan Song ◽  
Yuan-Fang Li ◽  
Wu Liu ◽  
...  

To date, visual question answering (VQA) (i.e., image QA and video QA) is still a holy grail in vision and language understanding, especially for video QA. Compared with image QA that focuses primarily on understanding the associations between image region-level details and corresponding questions, video QA requires a model to jointly reason across both spatial and long-range temporal structures of a video as well as text to provide an accurate answer. In this paper, we specifically tackle the problem of video QA by proposing a Structured Two-stream Attention network, namely STA, to answer a free-form or open-ended natural language question about the content of a given video. First, we infer rich longrange temporal structures in videos using our structured segment component and encode text features. Then, our structured two-stream attention component simultaneously localizes important visual instance, reduces the influence of background video and focuses on the relevant text. Finally, the structured two-stream fusion component incorporates different segments of query and video aware context representation and infers the answers. Experiments on the large-scale video QA dataset TGIF-QA show that our proposed method significantly surpasses the best counterpart (i.e., with one representation for the video input) by 13.0%, 13.5%, 11.0% and 0.3 for Action, Trans., TrameQA and Count tasks. It also outperforms the best competitor (i.e., with two representations) on the Action, Trans., TrameQA tasks by 4.1%, 4.7%, and 5.1%.


2021 ◽  
Vol 231 ◽  
pp. 107415
Author(s):  
Zhihuan Yan ◽  
Rong Peng ◽  
Yaqian Wang ◽  
Weidong Li

Author(s):  
Chen Zhao ◽  
Chenyan Xiong ◽  
Xin Qian ◽  
Jordan Boyd-Graber

Sign in / Sign up

Export Citation Format

Share Document