Interactive Knowledge Graph Attention Network for Recommender Systems

Author(s):  
Li Yang ◽  
E Shijia ◽  
Shiyao Xu ◽  
Yang Xiang
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 20840-20849
Author(s):  
Xiyang Liu ◽  
Huobin Tan ◽  
Qinghong Chen ◽  
Guangyan Lin

2021 ◽  
Vol 231 ◽  
pp. 107415
Author(s):  
Zhihuan Yan ◽  
Rong Peng ◽  
Yaqian Wang ◽  
Weidong Li

Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 232
Author(s):  
Janneth Chicaiza ◽  
Priscila Valdiviezo-Diaz

In recent years, the use of recommender systems has become popular on the web. To improve recommendation performance, usage, and scalability, the research has evolved by producing several generations of recommender systems. There is much literature about it, although most proposals focus on traditional methods’ theories and applications. Recently, knowledge graph-based recommendations have attracted attention in academia and the industry because they can alleviate information sparsity and performance problems. We found only two studies that analyze the recommendation system’s role over graphs, but they focus on specific recommendation methods. This survey attempts to cover a broader analysis from a set of selected papers. In summary, the contributions of this paper are as follows: (1) we explore traditional and more recent developments of filtering methods for a recommender system, (2) we identify and analyze proposals related to knowledge graph-based recommender systems, (3) we present the most relevant contributions using an application domain, and (4) we outline future directions of research in the domain of recommender systems. As the main survey result, we found that the use of knowledge graphs for recommendations is an efficient way to leverage and connect a user’s and an item’s knowledge, thus providing more precise results for users.


Author(s):  
Xingwei Zhu ◽  
Pengpeng Zhao ◽  
Jiajie Xu ◽  
Junhua Fang ◽  
Lei Zhao ◽  
...  

Author(s):  
Navin Tatyaba Gopal ◽  
Anish Raj Khobragade

The Knowledge graphs (KGs) catches structured data and relationships among a bunch of entities and items. Generally, constitute an attractive origin of information that can advance the recommender systems. But, present methodologies of this area depend on manual element thus don’t permit for start to end training. This article proposes, Knowledge Graph along with Label Smoothness (KG-LS) to offer better suggestions for the recommender Systems. Our methodology processes user-specific entities by prior application of a function capability that recognizes key KG-relationships for a specific user. In this manner, we change the KG in a specific-user weighted graph followed by application of a graph neural network to process customized entity embedding. To give better preliminary predisposition, label smoothness comes into picture, which places items in the KG which probably going to have identical user significant names/scores. Use of, label smoothness gives regularization above the edge weights thus; we demonstrate that it is comparable to a label propagation plan on the graph. Additionally building-up a productive usage that symbolizes solid adaptability concerning the size of knowledge graph. Experimentation on 4 datasets shows that our strategy beats best in class baselines. This process likewise accomplishes solid execution in cold start situations where user-entity communications remain meager.


2021 ◽  
Author(s):  
Linyi Ding ◽  
Weijie Yuan ◽  
Kui Meng ◽  
Gongshen Liu

2021 ◽  
pp. 108038
Author(s):  
Zhenghao Zhang ◽  
Jianbin Huang ◽  
Qinglin Tan

2019 ◽  
Vol 37 (3) ◽  
pp. 1-26 ◽  
Author(s):  
Hongwei Wang ◽  
Fuzheng Zhang ◽  
Jialin Wang ◽  
Miao Zhao ◽  
Wenjie Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document