UWB Circular Monopole Antenna Integrated with Spiral EBG on Ground Plane for Reduced SAR

Author(s):  
Mahesh M Munde ◽  
Jaswantsing L Rajput ◽  
Devidas V Chikhale ◽  
Abhay E Wagh
2004 ◽  
Vol 43 (6) ◽  
pp. 535-537 ◽  
Author(s):  
Saou-Wen Su ◽  
Kin-Lu Wong ◽  
Yuan-Tung Cheng ◽  
Wen-Shyang Chen

Author(s):  
Asmaa Zugari ◽  
Wael Abd Ellatif Ali ◽  
Mohammad Ahmad Salamin ◽  
El Mokhtar Hamham

In this paper, a compact reconfigurable tri-band/quad-band monopole antenna is presented. To achieve the multi-band behavior, two right-angled triangles were etched in a conventional rectangular patch, and a partial ground plane is used. Moreover, the proposed multi-band antenna is printed on a low cost FR4 epoxy with compact dimensions of 0.23[Formula: see text], where [Formula: see text] is calculated at the lowest resonance frequency. To provide frequency agility, a metal strip which acts as PIN diode was embedded in the frame of the modified patch. The tri-band/quad-band antenna performance in terms of reflection coefficient, radiation patterns, peak gain and efficiency was studied. The measured results are consistent with the simulated results for both cases. The simple structure and the compact size of the proposed antenna could make it a good candidate for multi-band wireless applications.


2021 ◽  
Vol 36 (4) ◽  
pp. 419-424
Author(s):  
Ahmed Ibrahim ◽  
Wael Ali ◽  
Hassan Aboushady

A spectrum-sensing algorithm is used to detect the available and the occupied frequency bands. The wideband antenna design approach is used for a microstrip fed monopole antenna that can be used for various wireless technologies such as GSM, UMTS, LTE, and WiFi operating at different frequencies from 1.25 to 3 GHz. The antenna is constructed from two copper layers of rectangular radiator and a partial ground plane. These layers are printed on an RO4003 substrate with dimensions 60 x 80 mm2. The antenna is experimentally fabricated to verify the simulation predictions and good matching between simulated and measured results is achieved. The wide-band antenna is tested by connecting it to the receiver of the Blade-RF Software Defined Radio (SDR) platform. A matlab script is then used to control the SDR board and to perform Spectrum Sensing for Cognitive Radio Applications.


Author(s):  
A H Majeed ◽  
K H Sayidmarie

<p class="Default">In this paper, a new approach to the design of an UWB monopole antenna with dual band-notched characteristics is presented.   The antenna has the form of an elliptical monopole over a ground plane having an elliptical slot to achieve the UWB. The dual-band notch function is created by inserting a U-shaped and a C-shaped slots on the radiating patch, thus no extra size is needed. The proposed antenna shows a good omnidirectional radiation pattern across the band from 3.2 to more than 14 GHz. The dual band-rejection is for 4.88-5.79GHz centered at 5.4GHz and 7.21-8.46 GHz centered at 7.8 GHz. The antenna prototype using the FR-4 substrate with ε<sub>r</sub>=4.3 has a compact size of 25mm×25 mm ×1.45mm. The fabricated prototype showed experimental results comparable to those obtained from the simulations.</p>


Author(s):  
Hyun-Chul Kim ◽  
Jin-Woo Jung ◽  
Hyeon-Jin Lee ◽  
Yeong-Seog Lim

Sign in / Sign up

Export Citation Format

Share Document