Performance Evaluation of SDR Blade RF using Wide-band Monopole Antenna for Spectrum Sensing Applications

2021 ◽  
Vol 36 (4) ◽  
pp. 419-424
Author(s):  
Ahmed Ibrahim ◽  
Wael Ali ◽  
Hassan Aboushady

A spectrum-sensing algorithm is used to detect the available and the occupied frequency bands. The wideband antenna design approach is used for a microstrip fed monopole antenna that can be used for various wireless technologies such as GSM, UMTS, LTE, and WiFi operating at different frequencies from 1.25 to 3 GHz. The antenna is constructed from two copper layers of rectangular radiator and a partial ground plane. These layers are printed on an RO4003 substrate with dimensions 60 x 80 mm2. The antenna is experimentally fabricated to verify the simulation predictions and good matching between simulated and measured results is achieved. The wide-band antenna is tested by connecting it to the receiver of the Blade-RF Software Defined Radio (SDR) platform. A matlab script is then used to control the SDR board and to perform Spectrum Sensing for Cognitive Radio Applications.

An efficient bandwidth allocation and dynamic bandwidth access away from its previous limits is referred as cognitive radio (CR).The limited spectrum with inefficient usage requires the advances of dynamic spectrum access approach, where the secondary users are authorized to utilize the unused temporary licensed spectrum. For this reason it is essential to analyze the absence/presence of primary users for spectrum usage. So spectrum sensing is the main requirement and developed to sense the absence/ presence of a licensed user. This paper shows the design model of energy detection based spectrum sensing in frequency domain utilizing Binary Symmetric Channel (BSC) ,Additive white real Gaussian channel (AWGN), Rayleigh fading channel users for 16-Quadrature Amplitude Modulation(QAM) which is utilized for the wide band sensing applications at low Signal to noise Ratio(SNR) level to reduce the false error identification. The spectrum sensing techniques has least computational complexity. Simulink model for the energy detection based spectrum sensing using frequency domain in MATLAB 2014a.


Author(s):  
N. Bello ◽  
K.O. Ogbeide

Cognitive radio has received considerable amount of attention as a promising technique to provide dynamic spectrum allocation. Spectrum sensing is one of the basic functions in the cognitive radio and is crucial to all other functions. Software- defined radios (SDRs) are considered due to its very high flexibility and have become a common platform for CR implementation replacing expensive spectrum analysers. The most popular among various SDR platforms is the universal software-defined radio peripheral (USRP). This paper presents a real-time swept spectrum sensing solution based on USRP B210. It also presents a detailed explanation of the concept of energy detection and the methodology for wide-band sensing. Finally, the performance of the proposed sensing solution is analysed through FFT graphs and spectrogram plot taken for 8 hours. The results showed that the proposed sensing solution was capable of achieving high resolution in the frequency domain of the wide band measured which implies that wide bands with heterogenous signals like the ISM band can be accurately resolved and analysed.


Author(s):  
Fatima Zahra El Bahi ◽  
Hicham Ghennioui ◽  
Mohcine Zouak

This paper presents the performance evaluation of the Energy Detector technique, which is one of the most popular Spectrum Sensing (SS) technique for Cognitive Radio (CR). SS is the ability to detect the presence of a Primary User (PU) (i.e. licensed user) in order to allow a Secondary User (SU) (i.e unlicensed user) to access PU's frequency band using CR, so that the available frequency bands can be used efficiently. We used for implementation an Universal Software Radio Peripheral (USRP), which is the most used Software Defined Radio (SDR) device for research in wireless communications. Experimental measurements show that the Energy Detector can obtain good performances in low Signal to Noise Ratio (SNR) values. Furthermore, computer simulations using MATLAB are closer to those of USRP measurements.


Measurement ◽  
2016 ◽  
Vol 94 ◽  
pp. 585-601 ◽  
Author(s):  
Leopoldo Angrisani ◽  
Domenico Capriglione ◽  
Gianni Cerro ◽  
Luigi Ferrigno ◽  
Gianfranco Miele

Author(s):  
Hyun Jae Park ◽  
Gyu-min Lee ◽  
Seung-Hun Shin ◽  
Byeong-hee Roh ◽  
Ji Myeong Oh

The increased usage of wireless communication has created a wireless frequency shortage problem. Cognitive Radio (CR) has attracted public attention, as one of the solutions that can resolve this issue. In this paper, the authors built an actual CR system testbed using the SDR (Software Defined Radio) platform, USRP (Universal Software Radio Peripheral) board, the SDR development toolkit, GNU Radio, and Raspberry Pi3, which is a single board computer. They configured Secondary User (SU)s with Raspberry Pi3 for straightforward and portable test environment. The authors' testbed performs spectrum sensing based on energy detection and determines whether the channel is occupied or not. Experimental results not only show performance but also provide their testbed that works well in multi-hop environments.


Sign in / Sign up

Export Citation Format

Share Document