Road segmentation from satellite aerial images by means of adaptive neighborhood mathematical morphology

Author(s):  
S. Letitia ◽  
Elwin Chandra Monie

This research proposes form shape mounted on “the deep convolutional neural network (CNN) for the detection of roads and the segmentation of aerial pix. Those images are received by using a UAV. The photograph segmentation set of rules has two levels: the studying segment and the working phase. The aerial images of the data deteriorated into their coloration additives, had been pre-processed in matlab on hue, after which divided into small 33 × 33 pixel packing containers the usage of a sliding container set of rules. CNN was once designed with matconvnet and had the accompanying structure: 4 convolutional levels, 4 grouping stages, a relu layer, a totally linked layer, and a softmax layer. The entire community has been organized for the use of 2,000 boxes. CNN was implemented the use of matlab programming on the gpu and the outcomes are promising. The CNN output offers pixel-by means of-pixel records, which class it has a location with (road / non-road). White pixel and choppy terrain are known as "0" (dark). Monitoring roads is a troublesome venture in aerial picture segmentation due to quite more than a few sizes and surfaces. One of the vastest steps in CNN training is the pre-processing phase. Due to toll road segmentation, dismissal structures and complexity enhancement have been applied.” this is an audited article on the relationship between representative upkeep techniques with work pleasure and responsibility in insurance plan businesses.


Author(s):  
S. Warnke ◽  
D. Bulatov

For extraction of road pixels from combined image and elevation data, Wegner et al. (2015) proposed classification of superpixels into road and non-road, after which a refinement of the classification results using minimum cost paths and non-local optimization methods took place. We believed that the variable set used for classification was to a certain extent suboptimal, because many variables were redundant while several features known as useful in Photogrammetry and Remote Sensing are missed. This motivated us to implement a variable selection approach which builds a model for classification using portions of training data and subsets of features, evaluates this model, updates the feature set, and terminates when a stopping criterion is satisfied. The choice of classifier is flexible; however, we tested the approach with Logistic Regression and Random Forests, and taylored the evaluation module to the chosen classifier. To guarantee a fair comparison, we kept the segment-based approach and most of the variables from the related work, but we extended them by additional, mostly higher-level features. Applying these superior features, removing the redundant ones, as well as using more accurately acquired 3D data allowed to keep stable or even to reduce the misclassification error in a challenging dataset.


2019 ◽  
Vol 9 (22) ◽  
pp. 4825 ◽  
Author(s):  
Tamara Alshaikhli ◽  
Wen Liu ◽  
Yoshihisa Maruyama

Updating road networks using remote sensing imagery is among the most important topics in city planning, traffic management and disaster management. As a good alternative to manual methods, which are considered to be expensive and time consuming, deep learning techniques provide great improvements in these regards. One of these techniques is the use of deep convolution neural networks (DCNNs). This study presents a road segmentation model consisting of a skip connection of U-net and residual blocks (ResBlocks) in the encoding part and convolution layers (Conv. layer) in the decoding part. Although the model uses fewer residual blocks in the encoding part and fewer convolution layers in the decoding part, it produces better image predictions in comparison with other state-of-the-art models. This model automatically and efficiently extracts road networks from high-resolution aerial imagery in an unexpansive manner using a small training dataset.


2014 ◽  
Vol 47 ◽  
pp. 50-62 ◽  
Author(s):  
Víctor González-Castro ◽  
Johan Debayle ◽  
Jean-Charles Pinoli

Sign in / Sign up

Export Citation Format

Share Document