road detection
Recently Published Documents


TOTAL DOCUMENTS

478
(FIVE YEARS 112)

H-INDEX

31
(FIVE YEARS 6)

2021 ◽  
pp. 1-19
Author(s):  
Mingzhou Liu ◽  
Xin Xu ◽  
Jing Hu ◽  
Qiannan Jiang

Road detection algorithms with high robustness as well as timeliness are the basis for developing intelligent assisted driving systems. To improve the robustness as well as the timeliness of unstructured road detection, a new algorithm is proposed in this paper. First, for the first frame in the video, the homography matrix H is estimated based on the improved random sample consensus (RANSAC) algorithm for different regions in the image, and the features of H are automatically extracted using convolutional neural network (CNN), which in turn enables road detection. Secondly, in order to improve the rate of subsequent similar frame detection, the color as well as texture features of the road are extracted from the detection results of the first frame, and the corresponding Gaussian mixture models (GMMs) are constructed based on Orchard-Bouman, and then the Gibbs energy function is used to achieve road detection in subsequent frames. Finally, the above algorithm is verified in a real unstructured road scene, and the experimental results show that the algorithm is 98.4% accurate and can process 58 frames per second with 1024×960 pixels.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7623
Author(s):  
Byeongjun Yu ◽  
Dongkyu Lee ◽  
Jae-Seol Lee ◽  
Seok-Cheol Kee

Although numerous road segmentation studies have utilized vision data, obtaining robust classification is still challenging due to vision sensor noise and target object deformation. Long-distance images are still problematic because of blur and low resolution, and these features make distinguishing roads from objects difficult. This study utilizes light detection and ranging (LiDAR), which generates information that camera images lack, such as distance, height, and intensity, as a reliable supplement to address this problem. In contrast to conventional approaches, additional domain transformation to a bird’s eye view space is executed to obtain long-range data with resolutions comparable to those of short-range data. This study proposes a convolutional neural network architecture that processes data transformed to a bird’s eye view plane. The network’s pathways are split into two parts to resolve calibration errors in the transformed image and point cloud. The network, which has modules that operate sequentially at various scaled dilated convolution rates, is designed to quickly and accurately handle a wide range of data. Comprehensive empirical studies using the Karlsruhe Institute of Technology and Toyota Technological Institute’s (KITTI’s) road detection benchmarks demonstrate that this study’s approach takes advantage of camera and LiDAR information, achieving robust road detection with short runtimes. Our result ranks 22nd in the KITTI’s leaderboard and shows real-time performance.


2021 ◽  
Vol 38 (5) ◽  
pp. 1503-1508
Author(s):  
Bandi Mary Sowbhagya Rani ◽  
Vasumathi Devi Majety ◽  
Chandra Shaker Pittala ◽  
Vallabhuni Vijay ◽  
Kanumalli Satya Sandeep ◽  
...  

Road identification from high-precision images is important to programmed mapping, urban planning, and updating geographic information system (GIS) databases. Manual identification of roads is slow, costly, and prone to errors. Therefore, it is a hot topic among remote sensing experts to develop programmed techniques for road identification from satellite images. The main challenge lies in the variation of width and surface contents between roads. This paper presents a road identification and extraction strategy for satellite images. The strategy, denoted as ESMIRMO, recognizes roads in satellite images through edge segmentation, using morphological operations. Specifically, morphological operations were employed to enhance the quality of the original image, laying a good basis for accurate road detection. Next, edge segmentation was adopted to detect the road in the original image accurately. After that, the proposed strategy was compared with traditional methods. The comparison shows that our strategy could identify roads from satellite images more accurately than traditional methods, and overcome many of their limitations. Overall, our strategy manages to enhance the quality of satellite images, pinpoint roads in the enhanced images, and provide drivers and repairers with real-time information on road conditions.


Author(s):  
Linying Zhou ◽  
Zhou Zhou ◽  
Hang Ning

Road detection from aerial images still is a challenging task since it is heavily influenced by spectral reflectance, shadows and occlusions. In order to increase the road detection accuracy, a proposed method for road detection by GAC model with edge feature extraction and segmentation is studied in this paper. First, edge feature can be extracted using the proposed gradient magnitude with Canny operator. Then, a reconstructed gradient map is applied in watershed transformation method, which is segmented for the next initial contour. Last, with the combination of edge feature and initial contour, the boundary stopping function is applied in the GAC model. The road boundary result can be accomplished finally. Experimental results show, by comparing with other methods in [Formula: see text]-measure system, that the proposed method can achieve satisfying results.


2021 ◽  
Vol 180 ◽  
pp. 357-369
Author(s):  
Ning Li ◽  
Yongqiang Zhao ◽  
Quan Pan ◽  
Seong G. Kong ◽  
Jonathan Cheung-Wai Chan

Author(s):  
Altaf Alam ◽  
Laxman Singh ◽  
Zainul Abdin Jaffery ◽  
Yogesh Kumar Verma ◽  
Manoj Diwakar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document