Feature Retrieving for Human Action Recognition by Mixed Scale Deep Feature Combined with Attention Model

Author(s):  
Xiaolei Zhao ◽  
Yang Yi ◽  
Zemin Qiu ◽  
Qingqing Zeng
2021 ◽  
pp. 108487
Author(s):  
Vittorio Mazzia ◽  
Simone Angarano ◽  
Francesco Salvetti ◽  
Federico Angelini ◽  
Marcello Chiaberge

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yun Liu ◽  
Ruidi Ma ◽  
Hui Li ◽  
Chuanxu Wang ◽  
Ye Tao

Action recognition is an important research direction of computer vision, whose performance based on video images is easily affected by factors such as background and light, while deep video images can better reduce interference and improve recognition accuracy. Therefore, this paper makes full use of video and deep skeleton data and proposes an RGB-D action recognition based two-stream network (SV-GCN), which can be described as a two-stream architecture that works with two different data. Proposed Nonlocal-stgcn (S-Stream) based on skeleton data, by adding nonlocal to obtain dependency relationship between a wider range of joints, to provide more rich skeleton point features for the model, proposed a video based Dilated-slowfastnet (V-Stream), which replaces traditional random sampling layer with dilated convolutional layers, which can make better use of depth the feature; finally, two stream information is fused to realize action recognition. The experimental results on NTU-RGB+D dataset show that proposed method significantly improves recognition accuracy and is superior to st-gcn and Slowfastnet in both CS and CV.


2013 ◽  
Vol 18 (2-3) ◽  
pp. 49-60 ◽  
Author(s):  
Damian Dudzńiski ◽  
Tomasz Kryjak ◽  
Zbigniew Mikrut

Abstract In this paper a human action recognition algorithm, which uses background generation with shadow elimination, silhouette description based on simple geometrical features and a finite state machine for recognizing particular actions is described. The performed tests indicate that this approach obtains a 81 % correct recognition rate allowing real-time image processing of a 360 X 288 video stream.


2018 ◽  
Vol 6 (10) ◽  
pp. 323-328
Author(s):  
K.Kiruba . ◽  
D. Shiloah Elizabeth ◽  
C Sunil Retmin Raj

ROBOT ◽  
2012 ◽  
Vol 34 (6) ◽  
pp. 745 ◽  
Author(s):  
Bin WANG ◽  
Yuanyuan WANG ◽  
Wenhua XIAO ◽  
Wei WANG ◽  
Maojun ZHANG

Sign in / Sign up

Export Citation Format

Share Document