Refining and Selecting Pseudo Ground Truth for Weakly-Supervised Object Detection

Author(s):  
Se-Hun Kim ◽  
Min-Seok Seo ◽  
Chun-Myung Park ◽  
Kyujoong Lee ◽  
Hyuk-Jae Lee
2018 ◽  
Vol 84 ◽  
pp. 68-81 ◽  
Author(s):  
Yongqiang Zhang ◽  
Yaicheng Bai ◽  
Mingli Ding ◽  
Yongqiang Li ◽  
Bernard Ghanem

Author(s):  
Ruyi Ji ◽  
Zeyu Liu ◽  
Libo Zhang ◽  
Jianwei Liu ◽  
Xin Zuo ◽  
...  

Weakly supervised object detection (WSOD), aiming to detect objects with only image-level annotations, has become one of the research hotspots over the past few years. Recently, much effort has been devoted to WSOD for the simple yet effective architecture and remarkable improvements have been achieved. Existing approaches using multiple-instance learning usually pay more attention to the proposals individually, ignoring relation information between proposals. Besides, to obtain pseudo-ground-truth boxes for WSOD, MIL-based methods tend to select the region with the highest confidence score and regard those with small overlap as background category, which leads to mislabeled instances. As a result, these methods suffer from mislabeling instances and lacking relations between proposals, degrading the performance of WSOD. To tackle these issues, this article introduces a multi-peak graph-based model for WSOD. Specifically, we use the instance graph to model the relations between proposals, which reinforces multiple-instance learning process. In addition, a multi-peak discovery strategy is designed to avert mislabeling instances. The proposed model is trained by stochastic gradients decent optimizer using back-propagation in an end-to-end manner. Extensive quantitative and qualitative evaluations on two publicly challenging benchmarks, PASCAL VOC 2007 and PASCAL VOC 2012, demonstrate the superiority and effectiveness of the proposed approach.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199332
Author(s):  
Xintao Ding ◽  
Boquan Li ◽  
Jinbao Wang

Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.


2021 ◽  
Author(s):  
Danpei Zhao ◽  
Zhichao Yuan ◽  
Zhenwei Shi ◽  
Fengying Xie

Author(s):  
Jeany Son ◽  
Daniel Kim ◽  
Solae Lee ◽  
Suha Kwak ◽  
Minsu Cho ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3415 ◽  
Author(s):  
Jinpeng Zhang ◽  
Jinming Zhang ◽  
Shan Yu

In the image object detection task, a huge number of candidate boxes are generated to match with a relatively very small amount of ground-truth boxes, and through this method the learning samples can be created. But in fact the vast majority of the candidate boxes do not contain valid object instances and should be recognized and rejected during the training and evaluation of the network. This leads to extra high computation burden and a serious imbalance problem between object and none-object samples, thereby impeding the algorithm’s performance. Here we propose a new heuristic sampling method to generate candidate boxes for two-stage detection algorithms. It is generally applicable to the current two-stage detection algorithms to improve their detection performance. Experiments on COCO dataset showed that, relative to the baseline model, this new method could significantly increase the detection accuracy and efficiency.


Sign in / Sign up

Export Citation Format

Share Document