Interior coordination using case-based reasoning and constraint satisfaction paradigm

Author(s):  
S. Ono ◽  
T. Izumi ◽  
A. Fujiyama ◽  
C.J. Ashley ◽  
S. Nakayama
1994 ◽  
Vol 9 (4) ◽  
pp. 383-397 ◽  
Author(s):  
John Hunt ◽  
Roger Miles

AbstractThis paper reviews a number of hybrid Case-Based Reasoning (CBR) systems. These systems are hybrid because the CBR components cooperate with one or more “co-reasoners” which employ a different type of reasoning strategy (e.g. qualitative simulation, constraint satisfaction, etc.). In this paper, we propose that CBR is in fact an inherently hybrid process. We review a number of systems and identify three classes of architecture which have been used for hybrid systems. We believe that to successfully exploit a co-reasoner within a CBR system it is necessary to analyse where, when, why and how the information provided by the co-reasoner will be used. We propose the KADS methodology as a suitable way of performing such an analysis and illustrate its use by example. We conclude by considering the control issues associated with the construction of hybrid CBR systems. We review the requirements of such systems and consider how well the two existing cooperation architectures match those requirements.


Author(s):  
Xiaoli Qin ◽  
William C. Regli

Abstract Case-Based Reasoning (CBR) provides a promising methodology for solving many complex engineering design problems. CBR is based on the idea that past problem-solving experiences can be reused and learned from in solving new problems. This paper presents an overview of a CBR design system to assist human engineers in performing mechanical bearing design. It retrieves previously designed cases from a case-base and uses adaptation techniques to adapt them to satisfy the current problem requirements. Our approach combines parametric adaptations and constraint satisfaction adaptations. The technique of parametric adaptation considers not only parameter substitution, but also the interrelationships between the problem definition and its solution. The technique of constraint satisfaction adaptation provides a method to globally check the design requirements to assess case adaptability. Currently, our system has been tested in the rolling bearing domain.


Author(s):  
XIAOLI QIN ◽  
WILLIAM C. REGLI

Case-based reasoning (CBR) is a promising methodology for solving many complex engineering design problems. CBR employs past problem-solving experiences when solving new problems. This paper presents a case study of how to apply CBR to a specific engineering problem: mechanical bearing design. A system is developed that retrieves previous design cases from a case repository and uses adaptation techniques to modify them to satisfy the current problem requirements. The approach combines both parametric and constraint satisfaction adaptations. Parametric adaptation considers not only parameter substitution but also the interrelationships between the problem definition and its solution. Constraint satisfaction provides a method to globally check the design requirements to assess case adaptability. Currently, our system has been implemented and tested in the domain of rolling bearings. This work serves as a template for application of CBR techniques to realistic engineering problems.


Vestnik MEI ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 132-139
Author(s):  
Ivan E. Kurilenko ◽  
◽  
Igor E. Nikonov ◽  

A method for solving the problem of classifying short-text messages in the form of sentences of customers uttered in talking via the telephone line of organizations is considered. To solve this problem, a classifier was developed, which is based on using a combination of two methods: a description of the subject area in the form of a hierarchy of entities and plausible reasoning based on the case-based reasoning approach, which is actively used in artificial intelligence systems. In solving various problems of artificial intelligence-based analysis of data, these methods have shown a high degree of efficiency, scalability, and independence from data structure. As part of using the case-based reasoning approach in the classifier, it is proposed to modify the TF-IDF (Term Frequency - Inverse Document Frequency) measure of assessing the text content taking into account known information about the distribution of documents by topics. The proposed modification makes it possible to improve the classification quality in comparison with classical measures, since it takes into account the information about the distribution of words not only in a separate document or topic, but in the entire database of cases. Experimental results are presented that confirm the effectiveness of the proposed metric and the developed classifier as applied to classification of customer sentences and providing them with the necessary information depending on the classification result. The developed text classification service prototype is used as part of the voice interaction module with the user in the objective of robotizing the telephone call routing system and making a shift from interaction between the user and system by means of buttons to their interaction through voice.


Sign in / Sign up

Export Citation Format

Share Document