Distributed community detection in social networks with genetic algorithms

Author(s):  
Raluca Halalai ◽  
Camelia Lemnaru ◽  
Rodica Potolea
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mehdi Ellouze

Social networks have become an important source of information from which we can extract valuable indicators that can be used in many fields such as marketing, statistics, and advertising among others. To this end, many research works in the literature offer users some tools that can help them take advantage of this mine of information. Community detection is one of these tools and aims to detect a set of entities that share some features within a social network. We have taken part in this effort, and we proposed an approach mainly based on pattern recognition techniques. The novelty of this approach is that we do not directly tackle the social networks to find these communities. We rather proceeded in two stages; first, we detected community cores through a special type of self-organizing map called the Growing Hierarchical Self-Organizing Map (GHSOM). In the second stage, the agglomerations resulting from GHSOM were grouped to retrieve the final communities. The quality of the final partition would be under the control of an evaluation function that is maximized through genetic algorithms. Our system was tested on real and artificial databases, and the obtained results are really encouraging.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 139 ◽  
Author(s):  
Vincenzo Cutello ◽  
Georgia Fargetta ◽  
Mario Pavone ◽  
Rocco A. Scollo

Community detection is one of the most challenging and interesting problems in many research areas. Being able to detect highly linked communities in a network can lead to many benefits, such as understanding relationships between entities or interactions between biological genes, for instance. Two different immunological algorithms have been designed for this problem, called Opt-IA and Hybrid-IA, respectively. The main difference between the two algorithms is the search strategy and related immunological operators developed: the first carries out a random search together with purely stochastic operators; the last one is instead based on a deterministic Local Search that tries to refine and improve the current solutions discovered. The robustness of Opt-IA and Hybrid-IA has been assessed on several real social networks. These same networks have also been considered for comparing both algorithms with other seven different metaheuristics and the well-known greedy optimization Louvain algorithm. The experimental analysis conducted proves that Opt-IA and Hybrid-IA are reliable optimization methods for community detection, outperforming all compared algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 443
Author(s):  
Inmaculada Gutiérrez ◽  
Juan Antonio Guevara ◽  
Daniel Gómez ◽  
Javier Castro ◽  
Rosa Espínola

In this paper, we address one of the most important topics in the field of Social Networks Analysis: the community detection problem with additional information. That additional information is modeled by a fuzzy measure that represents the risk of polarization. Particularly, we are interested in dealing with the problem of taking into account the polarization of nodes in the community detection problem. Adding this type of information to the community detection problem makes it more realistic, as a community is more likely to be defined if the corresponding elements are willing to maintain a peaceful dialogue. The polarization capacity is modeled by a fuzzy measure based on the JDJpol measure of polarization related to two poles. We also present an efficient algorithm for finding groups whose elements are no polarized. Hereafter, we work in a real case. It is a network obtained from Twitter, concerning the political position against the Spanish government taken by several influential users. We analyze how the partitions obtained change when some additional information related to how polarized that society is, is added to the problem.


Sign in / Sign up

Export Citation Format

Share Document