Analysing the economics of wind power based on Locational Marginal Prices using restructured power systems

Author(s):  
K. Dhayalini ◽  
M. S. Deepu ◽  
S. Sathiyamoorthy ◽  
C. Christober Asin Rajan
Author(s):  
REKHA SWAMI

In power systems, transmission network provides the infrastructure to support a competitive electricity market, but congestion occurs frequently in the weakly connected networks. Transmission congestion can enhance the locational market power in the congested area and weaken the efficiency of electricity market. In this paper market dispatch problem in the pool-based electricity market is formulated so as to maximize the social welfare of market participants subject to operational constraints given by real and reactive power balance equations, and security constraints in the form of apparent power flow limits over the congested transmission lines. The comparisons of the real and reactive power costs of generators, benefit value of consumers, producers surplus, locational marginal prices (LMPs) under uncongested or congested conditions are evaluated by using a five-bus system.


2019 ◽  
Vol 34 (3) ◽  
pp. 2013-2024 ◽  
Author(s):  
Xin Fang ◽  
Bri-Mathias Hodge ◽  
Ershun Du ◽  
Chongqing Kang ◽  
Fangxing Li

2014 ◽  
Vol 2014 (10) ◽  
pp. 538-545 ◽  
Author(s):  
Abdul Basit ◽  
Anca Daniela Hansen ◽  
Mufit Altin ◽  
Poul Sørensen ◽  
Mette Gamst

Author(s):  
Shenghu Li

The induction generators (IGs) are basic to wind energy conversion. They produce the active power and consume the reactive power, with the voltage characteristics fragile compared with that of the synchronous generators and doubly-fed IGs. In the stressed system states, they may intensify var imbalance, yielding undesirable operation of zone 3 impedance relays.In this paper, the operation characteristics of the zone 3 relays in the wind power systems is studied. With the theoretical and load flow analysis, it is proved that the equivalent impedance of the IGs lies in the 2nd quadrature, possibly seen as the backward faults by the mho relays, i.e. the apparent impedance enters into the protection region from the left side. The undesirable operation may be caused by more wind power, larger load, less var compensation, and larger torque angle.


Sign in / Sign up

Export Citation Format

Share Document