Optimization of integrated wind power grids based on locational marginal prices using restructured power system

2013 ◽  
Vol 1 (1) ◽  
pp. 9-17
Author(s):  
Dhayalini K ◽  
◽  
Deepu M.S ◽  
Sathiyamoorthy S ◽  
◽  
...  
2014 ◽  
Vol 986-987 ◽  
pp. 622-629
Author(s):  
Tian Long Shao ◽  
Jian Zhang ◽  
Xu Nan Zhao

As a kind of renewable clean energy, the constant access of wind power to power grids is bound to have a great impact on the power system. Based on the grid structure in Fuxin, this paper will state the difficulty of peak regulation and the matter of wasting wind power caused by the large-scale wind power integration and put forward some reasonable methods for using the wasting wind power in the heating in winter. The relevant results indicate that capacity of local consumption of wasting wind power can be improved. Under the circumstances, it can be conductive to solve the problem of wasting wind power results from the difficulty of peak regulation as well as inspire the power system planners.


Author(s):  
T. Nesti ◽  
J. Moriarty ◽  
A. Zocca ◽  
B. Zwart

This paper investigates large fluctuations of locational marginal prices (LMPs) in wholesale energy markets caused by volatile renewable generation profiles. Specifically, we study events of the form P ( LMP ∉ ∏ i = 1 n [ α i − , α i + ] ) , where LMP is the vector of LMPs at the n power grid nodes, and α − , α + ∈ R n are vectors of price thresholds specifying undesirable price occurrences. By exploiting the structure of the supply–demand matching mechanism in power grids, we look at LMPs as deterministic piecewise affine, possibly discontinuous functions of the stochastic input process, modelling uncontrollable renewable generation. We use techniques from large deviations theory to identify the most likely ways for extreme price spikes to happen, and to rank the nodes of the power grid in terms of their likelihood of experiencing a price spike. Our results are derived in the case of Gaussian fluctuations, and are validated numerically on the IEEE 14-bus test case. This article is part of the theme issue ‘The mathematics of energy systems’.


2013 ◽  
Vol 448-453 ◽  
pp. 4244-4249
Author(s):  
Qian Kun Wang ◽  
Li Ping Jiang

Based on an analysis of the misunderstanding and problems concerning wind power development, this paper summarizes the experiences of coordinated development of wind power and power grids in typical countries, proposes the principles and strategies for the coordinated development of wind power and power grids in China. Technically, bidirectional friendly technologies should be deployed to ensure the security of power system. In regulatory term, a complete and standardized regulatory strategy is key to harmonious interaction among different stakeholders concerning wind development. Incentive policies should be comprehensive, foreseeable and sustainable. Related measures and suggestions for large scale development of wind power in China are put forward.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5785
Author(s):  
Sunoh Kim ◽  
Jin Hur

As the importance of renewable generating resources has grown around the world, South Korea is also trying to expand the proportion of renewable generating resources in the power generation sector. Among the various renewable energy sources, wind generating resources are emerging as a key alternative to conventional power generations in the electricity sector in Korea accounted for 17.7 GW of total capacity by 2030. As wind generating resources are gradually replacing traditional generating resources, the system security and reliability are negatively affected because of the variability, due to intermittent outputs. Therefore, existing power grids will need to be correctly re-measured to cover the large scale of renewable energy, including wind generation. To expand the grid, we must understand the characteristics of renewable energy and the impact of its adoption in the grid. In this paper, we analyze various characteristics of wind power generation, and then we propose a probabilistic power output modeling method to consider the uncertainty of wind power generation. For the probabilistic approach, Monte-Carlo simulation is used in the modeling method. The modeled wind power outputs can help planning for the reinforcement and expansion of power systems to expand the capacity for large-scale renewable energy in the future. To verify the proposed method, some case studies were performed using empirical data, and probabilistic power flow calculation was performed by integrating large-scale wind power generation to the Jeju Island power system. The probabilistic method proposed in this paper can efficiently plan power system expansion and play a key strategy of evaluating the security of the power system through the results of stochastic power flow calculation.


2019 ◽  
Vol 34 (3) ◽  
pp. 2013-2024 ◽  
Author(s):  
Xin Fang ◽  
Bri-Mathias Hodge ◽  
Ershun Du ◽  
Chongqing Kang ◽  
Fangxing Li

2021 ◽  
Vol 267 ◽  
pp. 01050
Author(s):  
Yuyang Mao ◽  
Xiaolong Wang ◽  
Zhiqiang Wang

As the proportion of new energy sources such as wind power and photovoltaics in the power system continues to increase, their volatility and intermittentness have also brought new challenges to the stable operation of the power grid. The impact of the decline in power quality caused by a large number of wind power grids has become increasingly significant. This article analyzes and summarizes the development, status quo of wind power and the current problems of a large number of wind power grid connections. First, it briefly describes the history of wind power and the current development of wind power, and uses MATLAB to establish models of variable speed wind turbines connected to the grid. The models are used to analyze the output characteristics of wind turbines under normal operating conditions and faulty operating conditions. Finally, the impact of a large number of wind power grids on the power system is studied.


Sign in / Sign up

Export Citation Format

Share Document