Adaptive backstepping sliding mode control based on nonlinear disturbance observer for trajectory tracking of robotic manipulator

Author(s):  
Aquib Mustafa ◽  
Narendra K. Dhar ◽  
Pooja Agrawal ◽  
Nishchal K. Yerma
2019 ◽  
Vol 9 (16) ◽  
pp. 3290 ◽  
Author(s):  
Hoai Vu Anh Truong ◽  
Duc Thien Tran ◽  
Xuan Dinh To ◽  
Kyoung Kwan Ahn ◽  
Maolin Jin

The paper proposes an adaptive fuzzy position control for a 3-DOF hydraulic manipulator with large payload variation. The hydraulic manipulator uses electrohydraulic actuators as primary torque generators to enhance carrying payload of the manipulator. The proposed control combines backstepping sliding mode control, fuzzy logic system (FLS), and a nonlinear disturbance observer. The backstepping sliding mode control includes a sliding mode control for manipulator dynamics and a PI control for actuator dynamics. The fuzzy logic system is utilized to adjust the control gain and robust gain of the sliding mode control (SMC) based on the output of the nonlinear disturbance observer to compensate the payload. The Lyapunov approach and backstepping technique are used to prove the stability and robustness of the whole system. Some simulations are implemented, and the results are compared to other controllers to exhibit the effectiveness of the proposed control.


Author(s):  
Hadi Delavari ◽  
Hamid Heydarinejad

In this paper, a novel fractional-order (FO) backstepping sliding-mode control is proposed for a class of FO nonlinear systems with mismatched disturbances. Here the matched/mismatched disturbances are estimated by an FO nonlinear disturbance observer (NDO). This FO NDO is proposed based on FO backstepping algorithm to estimate the mismatched disturbances. The stability of the closed-loop system is proved by the new extension of Lyapunov direct method for FO systems. Exponential reaching law considerably decreases the chattering and provides a high dynamic tracking performance. Finally, three simulation examples are presented to show the features and the effectiveness of the proposed method. Results show that this observer approximates the unknown mismatched disturbances successfully.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wei Yuan ◽  
Guoqin Gao ◽  
Jianzhen Li

An adaptive backstepping sliding mode controller combined with a nonlinear disturbance observer is designed for trajectory tracking of the electrically driven hybrid conveying mechanism with mismatched disturbances. A nonlinear disturbance observer is constructed for estimation and compensation of the mismatched and matched disturbances. Then, a hybrid control scheme is designed by combining the adaptive backstepping sliding mode controller and the mentioned observer. The Lyapunov candidate functions are utilized to derive the control and adaptive law. According to the simulation and experimental results, superior tracking performance could be obtained through the presented control scheme compared with conventional backstepping sliding mode control. Meanwhile, the presented control scheme can effectively reduce the chattering problem and improve tracking precision.


Sign in / Sign up

Export Citation Format

Share Document