An Effective Dynamic Sliding Mode Control Based Nonlinear Disturbance Observer for a Quadrotor UAV

Author(s):  
Ha Le Nhu Ngoc Thanh ◽  
Choong Hyun Lee ◽  
Nguyen Xuan Mung ◽  
Sung Kyung Hong
Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 760 ◽  
Author(s):  
Ha ◽  
Hong

This paper introduces a robust dynamic sliding mode control algorithm using a nonlinear disturbance observer for system dynamics. The proposed method is applied to provide a rapid adaptation and strictly robust performance for the attitude and altitude control of unmanned aerial vehicles (UAVs). The procedure of the proposed method consists of two stages. First, a nonlinear disturbance observer is applied to estimate the exogenous perturbation. Second, a robust dynamic sliding mode controller integrated with the estimated values of disturbances is presented by a combination of a proportional–integral–derivative (PID) sliding surface and super twisting technique to compensate for the effect of these perturbations on the system. In addition, the stability of a control system is established by Lyapunov theory. A numerical simulation was performed and compared to recently alternative methods. An excellent tracking performance and superior stability of the attitude and altitude control of UAVs, exhibiting a fast response, good adaptation, and no chattering effect in the simulation results proved the robustness and effectiveness of the proposed method.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879574 ◽  
Author(s):  
Wei Yuan ◽  
Guoqin Gao

The trajectory-tracking performance of the automobile electro-coating conveying mechanism is severely interrupted by highly nonlinear crossing couplings, unmodeled dynamics, parameter variation, friction, and unknown external disturbance. In this article, a sliding mode control with a nonlinear disturbance observer is proposed for high-accuracy motion control of the conveying mechanism. The nonlinear disturbance observer is designed to estimate not only the internal/external disturbance but also the model uncertainties. Based on the output of the nonlinear disturbance observer, a sliding mode control approach is designed for the hybrid series–parallel mechanism. Then, the stability of the closed-loop system is proved by means of a Lyapunov analysis. Finally, simulations with typical desired trajectory are presented to demonstrate the high performance of the proposed composite control scheme.


2019 ◽  
Vol 9 (16) ◽  
pp. 3290 ◽  
Author(s):  
Hoai Vu Anh Truong ◽  
Duc Thien Tran ◽  
Xuan Dinh To ◽  
Kyoung Kwan Ahn ◽  
Maolin Jin

The paper proposes an adaptive fuzzy position control for a 3-DOF hydraulic manipulator with large payload variation. The hydraulic manipulator uses electrohydraulic actuators as primary torque generators to enhance carrying payload of the manipulator. The proposed control combines backstepping sliding mode control, fuzzy logic system (FLS), and a nonlinear disturbance observer. The backstepping sliding mode control includes a sliding mode control for manipulator dynamics and a PI control for actuator dynamics. The fuzzy logic system is utilized to adjust the control gain and robust gain of the sliding mode control (SMC) based on the output of the nonlinear disturbance observer to compensate the payload. The Lyapunov approach and backstepping technique are used to prove the stability and robustness of the whole system. Some simulations are implemented, and the results are compared to other controllers to exhibit the effectiveness of the proposed control.


Author(s):  
Xianqing Wu ◽  
Kexin Xu

This article is motivated by the control issues of the translational oscillator with rotational actuator system in the existence of uncertain disturbances. A nonlinear disturbance observer and a global sliding mode control method are proposed for the disturbance estimation and stabilization of the translational oscillator with rotational actuator system. Compared with the existing control methods, uncertain disturbances are estimated by the proposed nonlinear disturbance observer. In addition, the sliding mode control method is continuous and global robustness with respect to disturbances. Specifically, to facilitate the controller design, the dynamics of the translational oscillator with rotational actuator system are rearranged as the cascade form first. Then, a virtual signal is constructed and corresponding error dynamics are derived. Subsequently, a nonlinear disturbance observer and a continuous global sliding mode control method are proposed for the disturbance rejection and stabilization of the translational oscillator with rotational actuator system. Finally, simulation results are provided to verify the effectiveness and robustness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document