Enhancement of Available Transfer Capability using FACTS Devices

Author(s):  
M. Varun kumar Reddy ◽  
T. Nireekshana
Author(s):  
V. VIJAY VENU ◽  
A. K. VERMA

In this paper, beginning with a concise overview of the Available Transfer Capability (ATC) evaluation methods, we make a proposition for reliability management in the planning horizon of deregulated power systems through the concept of Adequacy Resiliency. The derived indices are meant as indicators of adaptability of power systems to ensure the required reliability levels. Improvements to this conceptualization upon the deployment of Flexible AC Transmission System (FACTS) devices are then put forward. We also explore the option of employing the created indices to the operational horizon of power systems, explaining the means of market enhancement. Core reliability issues arising out of the usage of FACTS are then discussed.


Author(s):  
Babatunde Olusegun Adewolu ◽  
Akshay Kumar Saha

Applications of Flexible AC Transmission Systems (FACTS) devices for enhancement of Available Transfer Capability (ATC) is gaining attention due to economic and technical limits of the conventional methods involving physical network expansions. FACTS allocation which is sine-qua-non to its performance is a major problem and it is being addressed in recent time with heuristic algorithms. Brain Storm Optimization Algorithms (BSOA) is a new heuristic and predicting optimization algorithms which revolutionizes human brainstorming process. BSOA is engaged for the optimum setting of FACTS devices for enhancement of ATC of a deregulated electrical power system network in this study. ATC enhancement, bus voltage deviation minimization and real power loss regulation are formulated into multi-objective problems for FACTS allocation purposes. Thyristor Controlled Series Capacitor (TCSC) is considered for simulation and analyses because of its fitness for active power control among other usefulness. ATC values are obtained for both normal and N-1-line outage contingency cases and these values are enhanced for different bilateral and multilateral power transactions. IEEE 30 Bus system is used for demonstration of the effectiveness of this approach in a Matlab software environment. Obtained enhanced ATC values for different transactions during normal evaluation cases are then compared with enhanced ATC values obtained with Particle Swarm Optimization (PSO) set TCSC technique under same trading. BSO behaved much like PSO throughout the achievements of other set objectives but performed better in ATC enhancement with 27.12 MW and 5.24 MW increase above enhanced ATC values achieved by the latter. The comparative of set objectives values relative to that obtained with PSO methods depict suitability and advantages of BSOA technique.


2003 ◽  
Vol 18 (1) ◽  
pp. 305-312 ◽  
Author(s):  
Ying Xiao ◽  
Y.H. Song ◽  
Chen-Ching Liu ◽  
Y.Z. Sun

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Divya Gupta ◽  
Sanjay Kumar Jain

Energy power flows are an important factor to be calculated and, thus, are needed to be enhanced in an electrical generation system. It is very necessary to optimally locate the Flexible Alternating Current Transmission Systems (FACTS) devices and improve the Available Transfer Capability (ATC) of the power transmission lines. It relieves the congestion of the system and increases the flow of power. This research study has been accomplished in two stages: optimization of location of FACTS device by the novel Sensitivity and Power loss-based Congestion Reduction (SPCR) method and the calculation of ATC using the proposed Metaheuristic Evolutionary Particle Swarm Optimization (MEEPSO) technique. The Thyristor Controlled Series Capacitor (TCSC) is used as a FACTS device to control the reactance of power transmission line. The effectiveness of the proposed methods is validated, utilizing the six bus as well as 30 bus system. The acquired outcomes are contrasted with conventional ACPTDF and DCPTDF procedures. These values are determined with the assistance of MATLAB version 2017 on the Intel Core i5 framework by taking two-sided exchanges and they are contrasted and values determined with the assistance of Power World Simulator (PWS) programming.


Sign in / Sign up

Export Citation Format

Share Document