A study on routing protocols in wireless body area networks and its suitability for m-Health applications

Author(s):  
Karthiga I. ◽  
Sharmila Sankar ◽  
Dhivahar P.
Author(s):  
Khalid Awan ◽  
Kashif Naseer Qureshi ◽  
Mehwish Mehwish

Wireless Body Area Networks (WBANs) are designed for monitoring the patient’s conditions and assist them in critical health situation. Tiny size wireless sensors sense the data related to patient health. Further, the sensed data sends to base station for further process. The base station sends the data to the nearest sink node or to the nearest medical center or hospital. In order to complete this entire process, wireless sensors need efficient routing without any error or delay. The routing protocols have been suffered with various challenges and issues which are related to the routing and energy issues. This paper provides a comprehensive survey of important existing routing protocols for WBANs. Paper also discusses the protocols strengths, limitations with their critical analysis.


Author(s):  
Fahimeh Rezaei ◽  
Michael Hempel ◽  
Hamid Sharif

One of the most rapidly growing technology areas is the advances in sensing, networking, and miniaturization in medical domain, which enables innovative new applications. This is especially apparent in e-Health and telemedicine. There is an enormous demand for innovation in wireless sensor networking, body area networks, network security and routing, and many other areas, attracting the attention of numerous researchers. With all the advances it can be challenging to identify trends and areas with opportunities for research engagement. In this paper, the authors therefore review the state-of-the-art in wireless communication used in telemedicine and e-Health applications – ranging from the Wide Area Networks to Body Area Networks – and discuss the studies and literature that employ these technologies for e-Health applications. Moreover, recent routing protocols and techniques that are used for Body Area Networks are investigated. One key challenge for e-Health applications, particularly for mobile or patient-worn devices, is energy consumption and supply. One possible solution is found in energy harvesting, and our survey encompasses current challenges and accomplishments in its application to e-Health and discuss various promising techniques.


Author(s):  
Ramanpreet Kaur ◽  
Ruchi Pasricha ◽  
Bikrampal Kaur

Background: The increased cost of treatments in the health care industry and advancements in technologies have led to a promising area of development in Wireless Sensor Networks and semiconductor technologies. Wireless Body Area Networks is a subset of WSN in which sensor nodes are placed on the human body or implanted inside the body to determine various physical parameters of the human body. This information is forwarded to the medical centers or central servers through gateways. The direct advantage of this technology is the existence of portable health monitoring applications as well as location independent monitoring applications. But, still, the existence of smart hospitals needs a lot of focused research related to practical problems faced by patients as well as practitioners. Introduction: The aim of this paper is to present an essential depiction of WBAN development in both medical and non- medical applications. The important features of various wireless technologies supported by WBAN have also been presented. It is apparent that to determine the overall performance of a network in terms of different parameters like temperature, power consumption, throughput and delay, etc., a significant role is played by the routing protocols. Since WBAN directly deals with the human body and hence implementation of a new protocol is a challenging task before researchers, this paper reviews each category of routing protocols and their corresponding limitations. A comparison among routing protocols will guide researchers in implementing a specific protocol for targeted application. The paper also focuses on the future of WBAN which will provide the research areas for further exploration. Conclusion: It is found that QoS aware protocols are employed specifically for critical applications. If we consider radiation imparted from the sensors and tissue protection of the human body, the thermal aware routing protocol is the solution. Another important conclusion of this paper is that the various protocols do not provide an optimal solution for selecting the forward node during routing and this solution primarily depends on the residual energy of the nodes and distance of the node from the sink. A study of protocols developed from 2004 onwards till date shows that implementation of WBAN using integration of IoT, EoT, and fog computing has been the emerging topic of research in recent years.


Author(s):  
Ramanpreet Kaur ◽  
Ruchi Pasricha ◽  
Bikrampal Kaur

The last paragraph on page 149 is revised as follows: ACKNOWLEDGEMENTS The authors would like to extend their gratitude and sincere thanks to the IKG Punjab Technical University, Kapurthala for giving the opportunity to carry out the present research work. The original paragraph provided is mentioned below: ACKNOWLEDGEMENTS Declared none.


2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0378
Author(s):  
Yousra abdul alsahib S.aldeen ◽  
Kashif Naseer Qureshi

          In this paper, we have investigated some of the most recent energy efficient routing protocols for wireless body area networks. This technology has seen advancements in recent times where wireless sensors are injected in the human body to sense and measure body parameters like temperature, heartbeat and glucose level. These tiny wireless sensors gather body data information and send it over a wireless network to the base station. The data measurements are examined by the doctor or   physician and the suitable cure is suggested. The whole communication is done through routing protocols in a network environment. Routing protocol consumes energy while helping non-stop communication in a wireless environment. Because of the very tiny size, energy consumption matters a lot. We have focused on the protocols, which provide energy efficiency and improve network lifetime, through put and minimal path loss. We will be discussing some of the most recent energy efficient routing protocols in this paper; later their comparison with an appropriate table is presented. In addition, recent challenges, possible application and perspectives are discussed.   


2013 ◽  
Vol 8 (3) ◽  
Author(s):  
Samaneh Movassaghi ◽  
Mehran Abolhasan ◽  
Justin Lipman

2018 ◽  
pp. 1479-1502 ◽  
Author(s):  
Fahimeh Rezaei ◽  
Michael Hempel ◽  
Hamid Sharif

One of the most rapidly growing technology areas is the advances in sensing, networking, and miniaturization in medical domain, which enables innovative new applications. This is especially apparent in e-Health and telemedicine. There is an enormous demand for innovation in wireless sensor networking, body area networks, network security and routing, and many other areas, attracting the attention of numerous researchers. With all the advances it can be challenging to identify trends and areas with opportunities for research engagement. In this paper, the authors therefore review the state-of-the-art in wireless communication used in telemedicine and e-Health applications – ranging from the Wide Area Networks to Body Area Networks – and discuss the studies and literature that employ these technologies for e-Health applications. Moreover, recent routing protocols and techniques that are used for Body Area Networks are investigated. One key challenge for e-Health applications, particularly for mobile or patient-worn devices, is energy consumption and supply. One possible solution is found in energy harvesting, and our survey encompasses current challenges and accomplishments in its application to e-Health and discuss various promising techniques.


Sign in / Sign up

Export Citation Format

Share Document