scholarly journals Classification of Weakly-Labeled Data with Partial Equivalence Relations

Author(s):  
Sanjiv Kumar ◽  
Henry A. Rowley
10.37236/5980 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Samuel Braunfeld

In Homogeneous permutations, Peter Cameron [Electronic Journal of Combinatorics 2002] classified the homogeneous permutations (homogeneous structures with 2 linear orders), and posed the problem of classifying the homogeneous $n$-dimensional permutation structures (homogeneous structures with $n$ linear orders) for all finite $n$. We prove here that the lattice of $\emptyset$-definable equivalence relations in such a structure can be any finite distributive lattice, providing many new imprimitive examples of homogeneous finite dimensional permutation structures. We conjecture that the distributivity of the lattice of $\emptyset$-definable equivalence relations is necessary, and prove this under the assumption that the reduct of the structure to the language of $\emptyset$-definable equivalence relations is homogeneous. Finally, we conjecture a classification of the primitive examples, and confirm this in the special case where all minimal forbidden structures have order 2. 


ISRN Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Samuel Coskey

We give a survey of Adrian Ioana's cocycle superrigidity theorem for profinite actions of Property (T) groups and its applications to ergodic theory and set theory in this expository paper. In addition to a statement and proof of Ioana's theorem, this paper features the following: (i) an introduction to rigidity, including a crash course in Borel cocycles and a summary of some of the best-known superrigidity theorems; (ii) some easy applications of superrigidity, both to ergodic theory (orbit equivalence) and set theory (Borel reducibility); and (iii) a streamlined proof of Simon Thomas's theorem that the classification of torsion-free abelian groups of finite rank is intractable.


1997 ◽  
Vol 3 (3) ◽  
pp. 329-346 ◽  
Author(s):  
Greg Hjorth ◽  
Alexander S. Kechris

We announce two new dichotomy theorems for Borel equivalence relations, and present the results in context by giving an overview of related recent developments.§1. Introduction. For X a Polish (i.e., separable, completely metrizable) space and E a Borel equivalence relation on X, a (complete) classification of X up to E-equivalence consists of finding a set of invariants I and a map c : X → I such that xEy ⇔ c(x) = c(y). To be of any value we would expect I and c to be “explicit” or “definable”. The theory of Borel equivalence relations investigates the nature of possible invariants and provides a hierarchy of notions of classification.The following partial (pre-)ordering is fundamental in organizing this study. Given equivalence relations E and F on X and Y, resp., we say that E can be Borel reduced to F, in symbolsif there is a Borel map f : X → Y with xEy ⇔ f(x)Ff(y). Then if is an embedding of X/E into Y/F, which is “Borel” (in the sense that it has a Borel lifting).Intuitively, E ≤BF might be interpreted in any one of the following ways:(i) The classi.cation problem for E is simpler than (or can be reduced to) that of F: any invariants for F work as well for E (after composing by an f as above).(ii) One can classify E by using as invariants F-equivalence classes.(iii) The quotient space X/E has “Borel cardinality” less than or equal to that of Y/F, in the sense that there is a “Borel” embedding of X/E into Y/F.


1993 ◽  
Vol 3 (2) ◽  
pp. 229-257 ◽  
Author(s):  
J. Lambek

Least fixpoints are constructed for finite coproducts of definable endofunctors of Cartesian closed categories that have weak polynomial products and joint equalizers of arbitrary families of pairs of parallel arrows. Both conditions hold in PER, the category whose objects are partial equivalence relations on N, and whose arrows are partial recursive functions. Weak polynomial products exist in any cartesian closed category with a finite number of objects as well as in any model of second order polymorphic lambda calculus: that is, in the proof theory of any second order positive intuitionistic propositional calculus, but such a category need not have equalizers. However, any finite coproduct of definable endofunctors of a cartesian closed category with weak polynomial products will have a least fixpoint in a larger category with equalizers whose objects are right ideals (or sieves) of modulo certain congruence relations, and whose arrows are induced from .


Sign in / Sign up

Export Citation Format

Share Document