scholarly journals Expectation-Maximization Attention Networks for Semantic Segmentation

Author(s):  
Xia Li ◽  
Zhisheng Zhong ◽  
Jianlong Wu ◽  
Yibo Yang ◽  
Zhouchen Lin ◽  
...  
Author(s):  
Yonghao Xu ◽  
Bo Du ◽  
Lefei Zhang ◽  
Qian Zhang ◽  
Guoli Wang ◽  
...  

Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.


Author(s):  
Haochen Wang ◽  
Xudong Zhang ◽  
Yutao Hu ◽  
Yandan Yang ◽  
Xianbin Cao ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 1176
Author(s):  
Cheng Zhang ◽  
Wanshou Jiang ◽  
Qing Zhao

In this work, we propose a new deep convolution neural network (DCNN) architecture for semantic segmentation of aerial imagery. Taking advantage of recent research, we use split-attention networks (ResNeSt) as the backbone for high-quality feature expression. Additionally, a disentangled nonlocal (DNL) block is integrated into our pipeline to express the inter-pixel long-distance dependence and highlight the edge pixels simultaneously. Moreover, the depth-wise separable convolution and atrous spatial pyramid pooling (ASPP) modules are combined to extract and fuse multiscale contextual features. Finally, an auxiliary edge detection task is designed to provide edge constraints for semantic segmentation. Evaluation of algorithms is conducted on two benchmarks provided by the International Society for Photogrammetry and Remote Sensing (ISPRS). Extensive experiments demonstrate the effectiveness of each module of our architecture. Precision evaluation based on the Potsdam benchmark shows that the proposed DCNN achieves competitive performance over the state-of-the-art methods.


Author(s):  
Zilong Zhong ◽  
Zhong Qiu Lin ◽  
Rene Bidart ◽  
Xiaodan Hu ◽  
Ibrahim Ben Daya ◽  
...  

Author(s):  
Y. Lyu ◽  
G. Vosselman ◽  
G.-S. Xia ◽  
M. Y. Yang

Abstract. Semantic segmentation for aerial platforms has been one of the fundamental scene understanding task for the earth observation. Most of the semantic segmentation research focused on scenes captured in nadir view, in which objects have relatively smaller scale variation compared with scenes captured in oblique view. The huge scale variation of objects in oblique images limits the performance of deep neural networks (DNN) that process images in a single scale fashion. In order to tackle the scale variation issue, in this paper, we propose the novel bidirectional multi-scale attention networks, which fuse features from multiple scales bidirectionally for more adaptive and effective feature extraction. The experiments are conducted on the UAVid2020 dataset and have shown the effectiveness of our method. Our model achieved the state-of-the-art (SOTA) result with a mean intersection over union (mIoU) score of 70.80%.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S678-S678
Author(s):  
Yasuhiro Akazawa ◽  
Yasuhiro Katsura ◽  
Ryohei Matsuura ◽  
Piao Rishu ◽  
Ansar M D Ashik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document