scholarly journals Self-Ensembling Attention Networks: Addressing Domain Shift for Semantic Segmentation

Author(s):  
Yonghao Xu ◽  
Bo Du ◽  
Lefei Zhang ◽  
Qian Zhang ◽  
Guoli Wang ◽  
...  

Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.

Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a “target” domain when the only available training data belongs to a different “source” domain. In this extended abstract, we briefly describe our new DA method called Distributional Correspondence Indexing (DCI) for sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. The experiments we have conducted show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification.


2020 ◽  
Vol 34 (03) ◽  
pp. 2661-2668
Author(s):  
Chuang Lin ◽  
Sicheng Zhao ◽  
Lei Meng ◽  
Tat-Seng Chua

Existing domain adaptation methods on visual sentiment classification typically are investigated under the single-source scenario, where the knowledge learned from a source domain of sufficient labeled data is transferred to the target domain of loosely labeled or unlabeled data. However, in practice, data from a single source domain usually have a limited volume and can hardly cover the characteristics of the target domain. In this paper, we propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN), for visual sentiment classification. To handle data from multiple source domains, it learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution. This is achieved via cycle consistent adversarial learning in an end-to-end manner. Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.


Author(s):  
Pin Jiang ◽  
Aming Wu ◽  
Yahong Han ◽  
Yunfeng Shao ◽  
Meiyu Qi ◽  
...  

Semi-supervised domain adaptation (SSDA) is a novel branch of machine learning that scarce labeled target examples are available, compared with unsupervised domain adaptation. To make effective use of these additional data so as to bridge the domain gap, one possible way is to generate adversarial examples, which are images with additional perturbations, between the two domains and fill the domain gap. Adversarial training has been proven to be a powerful method for this purpose. However, the traditional adversarial training adds noises in arbitrary directions, which is inefficient to migrate between domains, or generate directional noises from the source to target domain and reverse. In this work, we devise a general bidirectional adversarial training method and employ gradient to guide adversarial examples across the domain gap, i.e., the Adaptive Adversarial Training (AAT) for source to target domain and Entropy-penalized Virtual Adversarial Training (E-VAT) for target to source domain. Particularly, we devise a Bidirectional Adversarial Training (BiAT) network to perform diverse adversarial trainings jointly. We evaluate the effectiveness of BiAT on three benchmark datasets and experimental results demonstrate the proposed method achieves the state-of-the-art.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253415
Author(s):  
Hyunsik Jeon ◽  
Seongmin Lee ◽  
U Kang

Given trained models from multiple source domains, how can we predict the labels of unlabeled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims for predicting the labels of unlabeled target data by transferring the knowledge of multiple source domains. UMDA is a crucial problem in many real-world scenarios where no labeled target data are available. Previous approaches in UMDA assume that data are observable over all domains. However, source data are not easily accessible due to privacy or confidentiality issues in a lot of practical scenarios, although classifiers learned in source domains are readily available. In this work, we target data-free UMDA where source data are not observable at all, a novel problem that has not been studied before despite being very realistic and crucial. To solve data-free UMDA, we propose DEMS (Data-free Exploitation of Multiple Sources), a novel architecture that adapts target data to source domains without exploiting any source data, and estimates the target labels by exploiting pre-trained source classifiers. Extensive experiments for data-free UMDA on real-world datasets show that DEMS provides the state-of-the-art accuracy which is up to 27.5% point higher than that of the best baseline.


Author(s):  
A. Paul ◽  
K. Vogt ◽  
F. Rottensteiner ◽  
J. Ostermann ◽  
C. Heipke

In this paper we deal with the problem of measuring the similarity between training and tests datasets in the context of transfer learning (TL) for image classification. TL tries to transfer knowledge from a source domain, where labelled training samples are abundant but the data may follow a different distribution, to a target domain, where labelled training samples are scarce or even unavailable, assuming that the domains are related. Thus, the requirements w.r.t. the availability of labelled training samples in the target domain are reduced. In particular, if no labelled target data are available, it is inherently difficult to find a robust measure of relatedness between the source and target domains. This is of crucial importance for the performance of TL, because the knowledge transfer between unrelated data may lead to negative transfer, i.e. to a decrease of classification performance after transfer. We address the problem of measuring the relatedness between source and target datasets and investigate three different strategies to predict and, consequently, to avoid negative transfer in this paper. The first strategy is based on circular validation. The second strategy relies on the Maximum Mean Discrepancy (MMD) similarity metric, whereas the third one is an extension of MMD which incorporates the knowledge about the class labels in the source domain. Our method is evaluated using two different benchmark datasets. The experiments highlight the strengths and weaknesses of the investigated methods. We also show that it is possible to reduce the amount of negative transfer using these strategies for a TL method and to generate a consistent performance improvement over the whole dataset.


Author(s):  
Yang Shu ◽  
Zhangjie Cao ◽  
Mingsheng Long ◽  
Jianmin Wang

Domain adaptation improves a target task by knowledge transfer from a source domain with rich annotations. It is not uncommon that “source-domain engineering” becomes a cumbersome process in domain adaptation: the high-quality source domains highly related to the target domain are hardly available. Thus, weakly-supervised domain adaptation has been introduced to address this difficulty, where we can tolerate the source domain with noises in labels, features, or both. As such, for a particular target task, we simply collect the source domain with coarse labeling or corrupted data. In this paper, we try to address two entangled challenges of weaklysupervised domain adaptation: sample noises of the source domain and distribution shift across domains. To disentangle these challenges, a Transferable Curriculum Learning (TCL) approach is proposed to train the deep networks, guided by a transferable curriculum informing which of the source examples are noiseless and transferable. The approach enhances positive transfer from clean source examples to the target and mitigates negative transfer of noisy source examples. A thorough evaluation shows that our approach significantly outperforms the state-of-the-art on weakly-supervised domain adaptation tasks.


2021 ◽  
Author(s):  
Zhimeng Yang ◽  
Zirui Wu ◽  
Ming Zeng ◽  
Yazhou Ren ◽  
Xiaorong Pu ◽  
...  

<div>By transferring knowledge from a source domain, the performance of deep clustering on an unlabeled target domain can be improved. When achieving this, traditional approaches make the assumption that adequate amount of labeled data is available in a source domain. However, this assumption is usually unrealistic in practice. The source domain should be carefully selected to share some characteristics with the target domain, and it can not be guaranteed that rich labeled samples are always available in the selected source domain.</div><div>We propose a novel framework to improve deep clustering by transferring knowledge from a source domain without any labeled data. To select reliable instances in the source domain for transferring, we propose a novel adaptive threshold algorithm to select low entropy instances. To transfer important features of the selected instances, we propose a feature-level domain adaptation network (FeatureDA) which cancels unstable generation process. With extensive experiments, we validate that our method effectively improves deep clustering, without using any labeled data in the source domain. Besides, without using any labeled data in the source domain, our method achieves competitive results, compared to the state-of-the-art methods using labeled data in the source domain.</div>


Author(s):  
Kaizhong Jin ◽  
Xiang Cheng ◽  
Jiaxi Yang ◽  
Kaiyuan Shen

Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. As a simple and efficient method for domain adaptation, correlation alignment transforms the distribution of the source domain by utilizing the covariance matrix of the target domain, such that a model trained on the transformed source data can be applied to the target data. However, when source and target domains come from different institutes, exchanging information between the two domains might pose a potential privacy risk. In this paper, for the first time, we propose a differentially private correlation alignment approach for domain adaptation called PRIMA, which can provide privacy guarantees for both the source and target data. In PRIMA, to relieve the performance degradation caused by perturbing the covariance matrix in high dimensional setting, we present a random subspace ensemble based covariance estimation method which splits the feature spaces of source and target data into several low dimensional subspaces. Moreover, since perturbing the covariance matrix may destroy its positive semi-definiteness, we develop a shrinking based method for the recovery of positive semi-definiteness of the covariance matrix. Experimental results on standard benchmark datasets confirm the effectiveness of our approach.


Author(s):  
Liuyu Xiang ◽  
Xiaoming Jin ◽  
Lan Yi ◽  
Guiguang Ding

Deep learning models such as convolutional neural networks and recurrent networks are widely applied in text classification. In spite of their great success, most deep learning models neglect the importance of modeling context information, which is crucial to understanding texts. In this work, we propose the Adaptive Region Embedding to learn context representation to improve text classification. Specifically, a metanetwork is learned to generate a context matrix for each region, and each word interacts with its corresponding context matrix to produce the regional representation for further classification. Compared to previous models that are designed to capture context information, our model contains less parameters and is more flexible. We extensively evaluate our method on 8 benchmark datasets for text classification. The experimental results prove that our method achieves state-of-the-art performances and effectively avoids word ambiguity.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5868 ◽  
Author(s):  
Chao Han ◽  
Deyun Zhou ◽  
Zhen Yang ◽  
Yu Xie ◽  
Kai Zhang

Distribution mismatch caused by various resolutions, backgrounds, etc. can be easily found in multi-sensor systems. Domain adaptation attempts to reduce such domain discrepancy by means of different measurements, e.g., maximum mean discrepancy (MMD). Despite their success, such methods often fail to guarantee the separability of learned representation. To tackle this issue, we put forward a novel approach to jointly learn both domain-shared and discriminative representations. Specifically, we model the feature discrimination explicitly for two domains. Alternating discriminant optimization is proposed to obtain discriminative features with an l2 constraint in labeled source domain and sparse filtering is introduced to capture the intrinsic structures exists in the unlabeled target domain. Finally, they are integrated in a unified framework along with MMD to align domains. Extensive experiments compared with state-of-the-art methods verify the effectiveness of our method on cross-domain tasks.


Sign in / Sign up

Export Citation Format

Share Document