Incremental learning of Bayesian networks with hidden variables

Author(s):  
Fengzhan Tian ◽  
Hongwei Zhang ◽  
Yuchang Lu ◽  
Chunyi Shi
2019 ◽  
Vol 148 (3) ◽  
pp. 267-276
Author(s):  
Niels Martínez-Guevara ◽  
Nicandro Cruz-Ramírez ◽  
José-Rafael Rojano-Cáceres

2020 ◽  
pp. 1-46
Author(s):  
Nathanael Harwood ◽  
Richard Hall ◽  
Giorgia Di Capua ◽  
Andrew Russell ◽  
Allan Tucker

AbstractRecent enhanced warming and sea ice depletion in the Arctic have been put forward as potential drivers of severe weather in the midlatitudes. Evidence of a link between Arctic warming and midlatitude atmospheric circulation is growing, but the role of Arctic processes relative to other drivers remains unknown. Arctic-midlatitude connections in the North Atlantic region are particularly complex but important due to the frequent occurrence of severe winters in recent decades. Here, Dynamic Bayesian Networks with hidden variables are introduced to the field to assess their suitability for teleconnection analyses. Climate networks are constructed to analyse North Atlantic circulation variability at 5-day to monthly timescales during the winter months of the years 1981-2018. The inclusion of a number of Arctic, midlatitude and tropical variables allows for an investigation into the relative role of Arctic influence compared to internal atmospheric variability and other remote drivers.A robust covariability between regions of amplified Arctic warming and two definitions of midlatitude circulation is found to occur entirely within winter at submonthly timescales. Hidden variables incorporated in networks represent two distinct modes of stratospheric polar vortex variability, capturing a periodic shift between average conditions and slower anomalous flow. The influence of the Barents-Kara Seas region on the North Atlantic Oscillation is found to be the strongest link at 5- and 10-day averages, whilst the stratospheric polar vortex strongly influences jet variability on monthly timescales.


Sign in / Sign up

Export Citation Format

Share Document