Experimental Realization of Topologically Protected Surface Magnon Polaritons on Ceramic YIG Ferrites

Author(s):  
Alexander M. Holmes ◽  
Mohsen Sabbaghi ◽  
Swadesh Poddar ◽  
Samane Pakniyat ◽  
George W. Hanson
2020 ◽  
Vol 6 (8) ◽  
pp. eaav2360 ◽  
Author(s):  
Meng Xiao ◽  
Liping Ye ◽  
Chunyin Qiu ◽  
Hailong He ◽  
Zhengyou Liu ◽  
...  

Weyl points are zero-dimensional band degeneracy in three-dimensional momentum space that has nonzero topological charges. The presence of the topological charges protects the degeneracy points against perturbations and enables a variety of fascinating phenomena. It is so far unclear whether such charged objects can occur in higher dimensions. Here, we introduce the concept of charged nodal surface, a two-dimensional band degeneracy surface in momentum space that is topologically charged. We provide an effective Hamiltonian for this charged nodal surface and show that such a Hamiltonian can be implemented in a tight-binding model. This is followed by an experimental realization in a phononic crystal. The measured topologically protected surface arc state of such an acoustic semimetal reproduces excellently the full-wave simulations. Creating high-dimensional charged geometric objects in momentum space promises a broad range of unexplored topological physics.


2020 ◽  
pp. 10-21
Author(s):  
V. G. Babashov ◽  
◽  
N. M. Varrik ◽  

The emergence of new types of space and aviation technology necessitates the development of new types of thermal protection systems capable of operating at high temperature and long operating times. There are several types of thermal protection systems for different operating conditions: active thermal protection systems using forced supply of coolant to the protected surface, passive thermal protection systems using materials with low thermal conductivity without additional heat removal, high-temperature systems, which are simultaneously elements of the bearing structure and provide thermal protection, ablation materials. Heat protection systems in the form of rigid tiles and flexible panels, felt and mats are most common kind of heat protecting systems. This article examines the trends of development of flexible reusable heat protection systems intended for passive protection of aircraft structural structures from overheating.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yi Yang ◽  
Bo Zhen ◽  
John D. Joannopoulos ◽  
Marin Soljačić

Abstract The Hofstadter model, well known for its fractal butterfly spectrum, describes two-dimensional electrons under a perpendicular magnetic field, which gives rise to the integer quantum Hall effect. Inspired by the real-space building blocks of non-Abelian gauge fields from a recent experiment, we introduce and theoretically study two non-Abelian generalizations of the Hofstadter model. Each model describes two pairs of Hofstadter butterflies that are spin–orbit coupled. In contrast to the original Hofstadter model that can be equivalently studied in the Landau and symmetric gauges, the corresponding non-Abelian generalizations exhibit distinct spectra due to the non-commutativity of the gauge fields. We derive the genuine (necessary and sufficient) non-Abelian condition for the two models from the commutativity of their arbitrary loop operators. At zero energy, the models are gapless and host Weyl and Dirac points protected by internal and crystalline symmetries. Double (8-fold), triple (12-fold), and quadrupole (16-fold) Dirac points also emerge, especially under equal hopping phases of the non-Abelian potentials. At other fillings, the gapped phases of the models give rise to topological insulators. We conclude by discussing possible schemes for experimental realization of the models on photonic platforms.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Jeong Rae Kim ◽  
Jiyeon N. Lee ◽  
Junsik Mun ◽  
Yoonkoo Kim ◽  
Yeong Jae Shin ◽  
...  

2014 ◽  
Vol 104 (1) ◽  
pp. 014103 ◽  
Author(s):  
Carly M. Donahue ◽  
Paul W. J. Anzel ◽  
Luca Bonanomi ◽  
Thomas A. Keller ◽  
Chiara Daraio

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
He Gao ◽  
Haoran Xue ◽  
Zhongming Gu ◽  
Tuo Liu ◽  
Jie Zhu ◽  
...  

AbstractTopological phases of matter are classified based on their Hermitian Hamiltonians, whose real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the recently discovered higher-order topological insulators (TIs), the bulk topology can even exhibit hierarchical features, leading to topological corner states, as demonstrated in many photonic and acoustic artificial materials. Naturally, the intrinsic loss in these artificial materials has been omitted in the topology definition, due to its non-Hermitian nature; in practice, the presence of loss is generally considered harmful to the topological corner states. Here, we report the experimental realization of a higher-order TI in an acoustic crystal, whose nontrivial topology is induced by deliberately introduced losses. With local acoustic measurements, we identify a topological bulk bandgap that is populated with gapped edge states and in-gap corner states, as the hallmark signatures of hierarchical higher-order topology. Our work establishes the non-Hermitian route to higher-order topology, and paves the way to exploring various exotic non-Hermiticity-induced topological phases.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Mario A. Quiroz-Juárez ◽  
Jorge Chávez-Carlos ◽  
José L. Aragón ◽  
Jorge G. Hirsch ◽  
Roberto de J. León-Montiel

Sign in / Sign up

Export Citation Format

Share Document