SemreX: Towards Large-Scale Literature Information Retrieval and Browsing with Semantic Association

Author(s):  
Xiaomin Ning ◽  
Hai Jin ◽  
Hao Wu
2021 ◽  
Vol 55 (1) ◽  
pp. 1-2
Author(s):  
Bhaskar Mitra

Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents---or short passages---in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms---such as a person's name or a product model number---not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections---such as the document index of a commercial Web search engine---containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks. We ground our contributions with a detailed survey of the growing body of neural IR literature [Mitra and Craswell, 2018]. Our key contribution towards improving the effectiveness of deep ranking models is developing the Duet principle [Mitra et al., 2017] which emphasizes the importance of incorporating evidence based on both patterns of exact term matches and similarities between learned latent representations of query and document. To efficiently retrieve from large collections, we develop a framework to incorporate query term independence [Mitra et al., 2019] into any arbitrary deep model that enables large-scale precomputation and the use of inverted index for fast retrieval. In the context of stochastic ranking, we further develop optimization strategies for exposure-based objectives [Diaz et al., 2020]. Finally, this dissertation also summarizes our contributions towards benchmarking neural IR models in the presence of large training datasets [Craswell et al., 2019] and explores the application of neural methods to other IR tasks, such as query auto-completion.


2007 ◽  
Vol 41 (2) ◽  
pp. 83-88
Author(s):  
Flavio P. Junqueira ◽  
Vassilis Plachouras ◽  
Fabrizio Silvestri ◽  
Ivana Podnar

2017 ◽  
Vol 139 (11) ◽  
Author(s):  
Feng Shi ◽  
Liuqing Chen ◽  
Ji Han ◽  
Peter Childs

With the advent of the big-data era, massive information stored in electronic and digital forms on the internet become valuable resources for knowledge discovery in engineering design. Traditional document retrieval method based on document indexing focuses on retrieving individual documents related to the query, but is incapable of discovering the various associations between individual knowledge concepts. Ontology-based technologies, which can extract the inherent relationships between concepts by using advanced text mining tools, can be applied to improve design information retrieval in the large-scale unstructured textual data environment. However, few of the public available ontology database stands on a design and engineering perspective to establish the relations between knowledge concepts. This paper develops a “WordNet” focusing on design and engineering associations by integrating the text mining approaches to construct an unsupervised learning ontology network. Subsequent probability and velocity network analysis are applied with different statistical behaviors to evaluate the correlation degree between concepts for design information retrieval. The validation results show that the probability and velocity analysis on our constructed ontology network can help recognize the high related complex design and engineering associations between elements. Finally, an engineering design case study demonstrates the use of our constructed semantic network in real-world project for design relations retrieval.


Author(s):  
Nobuyoshi Sato ◽  
Minoru Udagawa ◽  
Minoru Uehara ◽  
Yoshifumi Sakai ◽  
Hideki Mori

Author(s):  
Patrice Bellot ◽  
Ludovic Bonnefoy ◽  
Vincent Bouvier ◽  
Frédéric Duvert ◽  
Young-Min Kim

2020 ◽  
pp. 147387162096663
Author(s):  
Úrsula Torres Parejo ◽  
Jesús R Campaña ◽  
M Amparo Vila ◽  
Miguel Delgado

Tag clouds are tools that have been widely used on the Internet since their conception. The main applications of these textual visualizations are information retrieval, content representation and browsing of the original text from which the tags are generated. Despite the extensive use of tag clouds, their enormous popularity and the amount of research related to different aspects of them, few studies have summarized their most important features when they work as tools for information retrieval and content representation. In this paper we present a summary of the main characteristics of tag clouds found in the literature, such as their different functions, designs and negative aspects. We also present a summary of the most popular metrics used to capture the structural properties of a tag cloud generated from the query results, as well as other measures for evaluating the goodness of the tag cloud when it works as a tool for content representation. The different methods for tagging and the semantic association processes in tag clouds are also considered. Finally we give a list of alternative for visual interfaces, which makes this study a useful first help for researchers who want to study the content representation and information retrieval interfaces in greater depth.


Author(s):  
Sherry Koshman ◽  
Edie Rasmussen

From the 1994 CAIS Conference: The Information Industry in Transition McGill University, Montreal, Quebec. May 25 - 27, 1994."Conventional" information retrieval systems (IRS), originating in the research of the 11950s and 1960s, are based on keyword matching and the application of Boolean operators to produce a set of retrieved documents from a database. In the ensuing years, research in information retrieval has identified a number of innovations (for example, automatic weighting of terms, ranked output, and relevance feedback) which have the potential to significantly enhance the performance of IRS, though commercial vendors have been slow to incorporate these changes into their systems. This was the situation in 1988 which led Radecki, in a special issue of Information Processing & Management, to examine the potential for improvements in conventional Boolean retrieval systems, and explore the reasons why these improvements had not been implemented in operational systems. Over the last five years, this position has begun to change as commercial vendors such as Dialog, Dow Jones, West Publishing, and Mead have implemented new, non-Boolean features in their systems, including natural language input, weighted keyword terms, and document ranking. This paper identifies some of the significant findings of IR research and compares them to the implementation of non-Boolean features in such systems. The preliminary survey of new features in commercial systems suggests the need for new methods of evaluation, including the development of evalutation measures appropriate to large-scale, interactive systems.


Sign in / Sign up

Export Citation Format

Share Document