deep model
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 267)

H-INDEX

21
(FIVE YEARS 7)

2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Li ◽  
Gaoqi Liang ◽  
Huan Zhao ◽  
Guo Chen

Event detection is an important application in demand-side management. Precise event detection algorithms can improve the accuracy of non-intrusive load monitoring (NILM) and energy disaggregation models. Existing event detection algorithms can be divided into four categories: rule-based, statistics-based, conventional machine learning, and deep learning. The rule-based approach entails hand-crafted feature engineering and carefully calibrated thresholds; the accuracies of statistics-based and conventional machine learning methods are inferior to the deep learning algorithms due to their limited ability to extract complex features. Deep learning models require a long training time and are hard to interpret. This paper proposes a novel algorithm for load event detection in smart homes based on wide and deep learning that combines the convolutional neural network (CNN) and the soft-max regression (SMR). The deep model extracts the power time series patterns and the wide model utilizes the percentile information of the power time series. A randomized sparse backpropagation (RSB) algorithm for weight filters is proposed to improve the robustness of the standard wide-deep model. Compared to the standard wide-deep, pure CNN, and SMR models, the hybrid wide-deep model powered by RSB demonstrates its superiority in terms of accuracy, convergence speed, and robustness.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianbin Zhu ◽  
Xiaojun Shi ◽  
Shuanghua Zhang

The detection of grammatical errors in English composition is an important task in the field of NLP. The main purpose of this task is to check out grammatical errors in English sentences and correct them. Grammatical error detection and correction are important applications in the automatic proofreading of English texts and in the field of English learning aids. With the increasing influence of English on a global scale, a huge breakthrough has been made in the task of detecting English grammatical errors. Based on machine learning, this paper designs a new method for detecting grammatical errors in English composition. First, this paper implements a grammatical error detection model based on Seq2Seq. Second, this paper implements a grammatical error detection and correction scheme based on the Transformer model. The Transformer model performs better than most grammar models. Third, this paper realizes the application of the BERT model in grammar error detection and error correction tasks, and the generalization ability of the model has been significantly enhanced. This solves the problem that the forward and backward cannot be merged when the Transformer trains the language model. Fourth, this paper proposes a method of grammatical error detection and correction in English composition based on a hybrid model. According to specific application scenarios, the corresponding neural network model is used for grammatical error correction. Combine the Seq2Seq structure to encode the input sequence and automate feature engineering. Through the combination of traditional model and deep model, the advantages are complemented to realize grammatical error detection and automatic correction.


La Matematica ◽  
2021 ◽  
Author(s):  
Roozbeh Yousefzadeh ◽  
Dianne P. O’Leary

AbstractDeep learning models have been criticized for their lack of easy interpretation, which undermines confidence in their use for important applications. Nevertheless, they are consistently utilized in many applications, consequential to humans’ lives, usually because of their better performance. Therefore, there is a great need for computational methods that can explain, audit, and debug such models. Here, we use flip points to accomplish these goals for deep learning classifiers used in social applications. A trained deep learning classifier is a mathematical function that maps inputs to classes. By way of training, the function partitions its domain and assigns a class to each of the partitions. Partitions are defined by the decision boundaries which are expected to be geometrically complex. This complexity is usually what makes deep learning models powerful classifiers. Flip points are points on those boundaries and, therefore, the key to understanding and changing the functional behavior of models. We use advanced numerical optimization techniques and state-of-the-art methods in numerical linear algebra, such as rank determination and reduced-order models to compute and analyze them. The resulting insight into the decision boundaries of a deep model can clearly explain the model’s output on the individual level, via an explanation report that is understandable by non-experts. We also develop a procedure to understand and audit model behavior towards groups of people. We show that examining decision boundaries of models in certain subspaces can reveal hidden biases that are not easily detectable. Flip points can also be used as synthetic data to alter the decision boundaries of a model and improve their functional behaviors. We demonstrate our methods by investigating several models trained on standard datasets used in social applications of machine learning. We also identify the features that are most responsible for particular classifications and misclassifications. Finally, we discuss the implications of our auditing procedure in the public policy domain.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Di Mu ◽  
Shuning Wang

It is important to accurately estimate the SOC to ensure that the lithium-ion battery is within a safe working range, prevent over-charging and over-discharging, and ultimately improve battery life. However, SOC is an internal state of the battery and cannot be directly measured. This paper proposes a SOC estimation method based on the wide and deep neural network model, which combines the linear regression (LR) model and the backpropagation neural network (BPNN) model. This article uses the dataset provided by the Advanced Energy Storage and Applications (AESA) group to verify the performance of the model. The performance of the proposed model is compared with the common BPNN model in terms of root mean square error (RMSE), average absolute proportional error (MAPE), and SOC estimation error. The validation results prove that the effect of the proposed model in estimating SOC is better than that of the ordinary BPNN model. Compared with the BPNN model, the RMSE values of the SOC predicted value of the wide and deep model in the charging and discharging stages were reduced by 10.2% and 15.4%, respectively. Experimental results show that the maximum SOC estimation error of the model in predicting the SOC during charging and discharging is 0.42% and 0.86%, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jian Xing ◽  
Shupeng Wang ◽  
Xiaoyu Zhang ◽  
Yu Ding

Fake news can cause widespread and tremendous political and social influence in the real world. The intentional misleading of fake news makes the automatic detection of fake news an important and challenging problem, which has not been well understood at present. Meanwhile, fake news can contain true evidence imitating the true news and present different degrees of falsity, which further aggravates the difficulty of detection. On the other hand, the fake news speaker himself provides rich social behavior information, which provides unprecedented opportunities for advanced fake news detection. In this study, we propose a new hybrid deep model based on behavior information (HMBI), which uses the social behavior information of the speaker to detect fake news more accurately. Specifically, we model news content and social behavior information simultaneously to detect the degrees of falsity of news. The experimental analysis on real-world data shows that the detection accuracy of HMBI is increased by 10.41% on average, which is the highest of the existing model. The detection accuracy of fake news exceeds 50% for the first time.


Author(s):  
Wentao Zhang ◽  
Huansheng Song ◽  
Lichen Liu ◽  
Congliang Li ◽  
Bochen Mu ◽  
...  

Author(s):  
Haibo Jin ◽  
Jinyin Chen ◽  
Haibin Zheng ◽  
Zhen Wang ◽  
Jun Xiao ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ibtissam Benchaji ◽  
Samira Douzi ◽  
Bouabid El Ouahidi ◽  
Jaafar Jaafari

AbstractAs credit card becomes the most popular payment mode particularly in the online sector, the fraudulent activities using credit card payment technologies are rapidly increasing as a result. For this end, it is obligatory for financial institutions to continuously improve their fraud detection systems to reduce huge losses. The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data, using attention mechanism and LSTM deep recurrent neural networks. The proposed model, compared to previous studies, considers the sequential nature of transactional data and allows the classifier to identify the most important transactions in the input sequence that predict at higher accuracy fraudulent transactions. Precisely, the robustness of our model is built by combining the strength of three sub-methods; the uniform manifold approximation and projection (UMAP) for selecting the most useful predictive features, the Long Short Term Memory (LSTM) networks for incorporating transaction sequences and the attention mechanism to enhance LSTM performances. The experimentations of our model give strong results in terms of efficiency and effectiveness.


Author(s):  
Jie Wang ◽  
Kaibin Tian ◽  
Dayong Ding ◽  
Gang Yang ◽  
Xirong Li

Expanding visual categorization into a novel domain without the need of extra annotation has been a long-term interest for multimedia intelligence. Previously, this challenge has been approached by unsupervised domain adaptation (UDA). Given labeled data from a source domain and unlabeled data from a target domain, UDA seeks for a deep representation that is both discriminative and domain-invariant. While UDA focuses on the target domain, we argue that the performance on both source and target domains matters, as in practice which domain a test example comes from is unknown. In this article, we extend UDA by proposing a new task called unsupervised domain expansion (UDE), which aims to adapt a deep model for the target domain with its unlabeled data, meanwhile maintaining the model’s performance on the source domain. We propose Knowledge Distillation Domain Expansion (KDDE) as a general method for the UDE task. Its domain-adaptation module can be instantiated with any existing model. We develop a knowledge distillation-based learning mechanism, enabling KDDE to optimize a single objective wherein the source and target domains are equally treated. Extensive experiments on two major benchmarks, i.e., Office-Home and DomainNet, show that KDDE compares favorably against four competitive baselines, i.e., DDC, DANN, DAAN, and CDAN, for both UDA and UDE tasks. Our study also reveals that the current UDA models improve their performance on the target domain at the cost of noticeable performance loss on the source domain.


Sign in / Sign up

Export Citation Format

Share Document