Kinematics analysis of electromagnetism worm drive

Author(s):  
Xuemei Guan ◽  
Lizhong Xu
2020 ◽  
Vol 103 (4) ◽  
pp. 003685042098122
Author(s):  
Jingzi Zhang ◽  
Jin’ge Wang ◽  
Kai Wang

Although a significant amount of research on robot joint reducer was conducted, there are few systematic investigations on a novel joint reducer adopting inner worm-gear plane enveloping drum worm drive. To satisfy the development of modular robot joint, the primary objective of this paper was to systematically investigate the drum worm drive adopted in the novel joint reducer with integrated structure of drive, transmission, and support in the following aspects: meshing theory, design, analysis, and manufacture. According to the gear meshing theory, mechanical design method, classical mechanics, finite element method, and machining principle of virtual center distance, the systematic investigations around the drum worm pair applied in the novel joint reducer were conducted including the macro and micro meshing theory, structure design, mechanical and contact properties analyses, and manufacturing method. The novel joint reducer’s integrated structure was designed, and the drum worm pair’s mechanical and contact properties analyses were conducted, which showed: (1) the worm’s bending stress and deflection, worm-gear teeth’s shear stress and bending stress as well as the maximum contact stresses were all below their corresponding allowable values; (2) the maximum contact stresses appeared at the engage-in position of the worm pair opposing to the engaging-out position where the largest contact areas appeared. Then the manufacturing of drum worm’s spiral tooth was conducted via the modified 4-axis linkage CNC grinder according to the conjugate motion. Finally the novel joint reducer’s industrial prototype was assembled. The novel joint reducer with integrated structure of drive, transmission and support was designed and manufactured for the first time. The flowchart of design and manufacture of the reducer’s drum worm pair in this process was formulated, which provides a new insight on the research of joint reducers as well as other fields.


2011 ◽  
Vol 121-126 ◽  
pp. 1636-1640
Author(s):  
Ying Qiu ◽  
Wei Min Li ◽  
Zhi Wei

Servo presses are widely used in high-precision, complicated forming process fields and promoted around the world in recent years. It is the trend of forging machinery for its servo motor-based digital heavy haul driven technology. At present, it becomes the hot research field. The structure characteristics of triangular elbow servo press were firstly introduced in the paper. And then the kinematics mathematical model of triangular elbow transmission mechanism was deduced and given. Based on it, this paper provides the slider kinematics analysis by Matlab. The slider motion law under various parameters can be analyzed and compared. The results would be useful reference for optimization design of transmission mechanism. The case study provides more visual and reliable decision basis for designer.


2016 ◽  
Vol 152 (1) ◽  
pp. 12 ◽  
Author(s):  
M. L. Lister ◽  
M. F. Aller ◽  
H. D. Aller ◽  
D. C. Homan ◽  
K. I. Kellermann ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document