scholarly journals Exact kinematics analysis of Car’s suspension mechanisms using symbolic computation and interval analysis

2005 ◽  
Vol 40 (4) ◽  
pp. 395-413 ◽  
Author(s):  
Yves A. Papegay ◽  
Jean-Pierre Merlet ◽  
David Daney
2011 ◽  
Vol 480-481 ◽  
pp. 1469-1474
Author(s):  
Hong Jun Song ◽  
Xue Wen Rong ◽  
Yi Bin Li ◽  
Jiu Hong Ruan

The paper presents a dedicated kinematics-based simulation system for quadruped robot gait study, named as TQRSS. The system employs Ginac’s symbolic computation technology, making it possible on-line planning and help concentrate on robot gait planning and parameter adjusting. The Taishan quadruped robot’s kinematics analysis is also presented.


10.2514/3.920 ◽  
1997 ◽  
Vol 11 ◽  
pp. 472-476
Author(s):  
Henry H. Kerr ◽  
F. C. Frank ◽  
Jae-Woo Lee ◽  
W. H. Mason ◽  
Ching-Yu Yang

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2116
Author(s):  
Yue Xiao ◽  
Limin Tang ◽  
Jiawei Xie

There are great uncertainties in road design parameters, and the traditional point numerical calculation results cannot reflect the complexity of the actual project well. Additionally, the calculation method of road design theory based on interval analysis is more difficult in the use of uncertain design parameters. In order to simplify the calculation process of the interval parameters in the road design theory, the asphalt pavement design is taken as the analysis object, and the permanent deformation of the asphalt mixture is simplified by combining the interval analysis theory. Considering the uncertainty of the design parameters, the data with boundaries but uncertain size are expressed in intervals, and then the interval calculation formula for the permanent deformation of the asphalt mixture is derived, and the interval results are obtained. In order to avoid the dependence of interval calculation on the computer code, according to the interval calculation rule, the interval calculation method with the upper and lower end point values as point operations is proposed. In order to overcome the contradiction between interval expansion results and engineering applications, by splitting the multi-interval variable formulas, the interval variable weights are reasonably given, and the synthesis of each single interval result realizes a simplified calculation based on interval variable weight assignment. The analysis results show that the interval calculation method based on the point operation rule is accurate and reliable, and the simplified method based on the interval variable weight assignment is effective and feasible. The simplified interval calculation method proposed in this paper provides a reference for the interval application of road design theory.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 545-554
Author(s):  
Asghar Ali ◽  
Aly R. Seadawy ◽  
Dumitru Baleanu

AbstractThis article scrutinizes the efficacy of analytical mathematical schemes, improved simple equation and exp(-\text{Ψ}(\xi ))-expansion techniques for solving the well-known nonlinear partial differential equations. A longitudinal wave model is used for the description of the dispersion in the circular rod grounded via transverse Poisson’s effect; similarly, the Boussinesq equation is used for extensive wave propagation on the surface of water. Many other such types of equations are also solved with these techniques. Hence, our methods appear easier and faster via symbolic computation.


Sign in / Sign up

Export Citation Format

Share Document