Low-Cost Wi-Fi-based System Using Passive Microwave Sensors for Liquid Characterization

Author(s):  
Michael M.Y.R. Riad ◽  
Angie R. Eldamak
2021 ◽  
pp. 1-42
Author(s):  
Song Yang ◽  
Vincent Lao ◽  
Richard Bankert ◽  
Timothy R. Whitcomb ◽  
Joshua Cossuth

AbstractAccurate precipitation climatology is presented for tropical depression (TD), tropical storm (TS), and tropical cyclone (TC) over oceans using the recently-released, consistent and high quality precipitation datasets from all passive microwave sensors covering 1998-2012 along with the Automated Rotational Center Hurricane Eye Retrieval (ARCHER)-based TC center positions. Impacts with respect to the direction of both TC movement and the 200-850 hPa wind shear on the spatial distributions of TC precipitation are analyzed. The TC eyewall contraction process during its intensification is noted by a decrease in the radius of maximum rainrate with an increase in TC intensity. For global TCs, the maximum rainrate with respect to the direction of TC movement is located in the down-motion quadrants for TD, TS, and Cat 1-3 TCs, and in a concentric pattern for Cat 4-5 TCs. A consistent maximum TC precipitation with respect to the direction of the 200-850 hPa wind shear is shown in the down shear left quadrant (DSLQ). With respect to direction of TC movement, spatial patterns of TC precipitation vary with basins and show different features for weak and strong storms. The maximum rainrate is always located in DSLQ for all TC categories and basins, except the Southern Hemisphere basin where it is in the down shear right quadrant (DSRQ). This study not only confirms previously published results on TC precipitation distributions relative to vertical wind shear direction, but also provides a detailed distribution for each TC category and TS, while TD storms display an enhanced rainfall rate ahead of the down shear quadrants.


2018 ◽  
Vol 10 (2) ◽  
pp. 107 ◽  
Author(s):  
Robin van der Schalie ◽  
Richard de Jeu ◽  
Robert Parinussa ◽  
Nemesio Rodríguez-Fernández ◽  
Yann Kerr ◽  
...  

2020 ◽  
Author(s):  
Gregory Porter ◽  
Richard Delf ◽  
Albin Gasiewski ◽  
Michael Hurowitz ◽  
David Gallaher ◽  
...  

<p>The recent successful launch of the Orbital Micro Systems GEMS-1 IOD (Global Environmental Monitoring System In-orbit Demonstrator) satellite carrying the University of Colorado’s MiniRad 118-GHz imager/sounder instrument provides the basis for a new means of observing atmospheric precipitation, temperature, and related state variables. GEMS-1 supports an 8-channel passive microwave radiometer operating at the 118.7503 GHz oxygen resonance with cross-track scanning imaging system providing cross- and along track Nyquist sampling at 17 km 3dB spatial resolution. It is precisely calibrated using cold space views along with and an on board reference, yielding the first low-cost commercial weather satellite imagery. GEMS is the first of a constellation of approximately 50 such satellites of progressively improving resolution and spectral coverage that will collectively provide Nyquist time-sampling of precipitation and related weather variables on a global basis, and using microwave frequencies will provide such information probing through most cloud cover. Presented will be first light imagery and on-orbit performance data from the GEMS-1 mission, including validation data on the satellite brightness temperatures. Products will include calibrated multispectral imagery, temperature profiles, retrieved rain rate, and precipitation cell top altitude. The expansion of the GEMS-1 mission to the full GEMS constellation will be outlined.</p>


2006 ◽  
Vol 44 ◽  
pp. 352-356 ◽  
Author(s):  
Walter N. Meier ◽  
Mingrui Dai

AbstractPassive microwave remote-sensing imagery has proven to be a useful Source for Sea-ICE motions because of its all-sky capabilities. However, the low Spatial resolution of the passive microwave Sensors has not allowed the retrieval of Small-scale motion details Such as lead and ridge formation. The NAsA Earth Observing System Advanced Microwave Scanning Radiometer (AMSR-E) has more than double the Spatial resolution of previous passive microwave Sensors, allowing it to track the formation of moderate-sized leads and yield much more detailed and more accurate ICE-motion estimates. Comparisons with buoys indicate that AMSR-E motions have errors >30% lower than ICE motions derived from the previous passive microwave Sensors. While AMSR-E Still cannot retrieve the Same level of detail as Synthetic aperture radars or visible/infrared Sensors, AMSR-E’s complete coverage can better capture the ephemeral motions of the Sea-ICE cover on daily, and potentially Sub-daily, timescales.


Sign in / Sign up

Export Citation Format

Share Document