Soil moisture measurements at global scale using active and passive microwave sensors

Author(s):  
S. Palsocia ◽  
G. Macelloni ◽  
P. Pampaloni ◽  
E. Santi ◽  
T. Koike
Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1225
Author(s):  
Lanka Karthikeyan ◽  
Ming Pan ◽  
Dasika Nagesh Kumar ◽  
Eric F. Wood

Passive microwave sensors use a radiative transfer model (RTM) to retrieve soil moisture (SM) using brightness temperatures (TB) at low microwave frequencies. Vegetation optical depth (VOD) is a key input to the RTM. Retrieval algorithms can analytically invert the RTM using dual-polarized TB measurements to retrieve the VOD and SM concurrently. Algorithms in this regard typically use the τ-ω types of models, which consist of two third-order polynomial equations and, thus, can have multiple solutions. Through this work, we find that uncertainty occurs due to the structural indeterminacy that is inherent in all τ-ω types of models in passive microwave SM retrieval algorithms. In the process, a new analytical solution for concurrent VOD and SM retrieval is presented, along with two widely used existing analytical solutions. All three solutions are applied to a fixed framework of RTM to retrieve VOD and SM on a global scale, using X-band Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB data. Results indicate that, with structural uncertainty, there ensues a noticeable impact on the VOD and SM retrievals. In an era where the sensitivity of retrieval algorithms is still being researched, we believe the structural indeterminacy of RTM identified here would contribute to uncertainty in the soil moisture retrievals.


2018 ◽  
Vol 10 (9) ◽  
pp. 1351 ◽  
Author(s):  
Hongzhang Xu ◽  
Qiangqiang Yuan ◽  
Tongwen Li ◽  
Huanfeng Shen ◽  
Liangpei Zhang ◽  
...  

Soil moisture is a key component of the water cycle budget. Sensing soil moisture using microwave sensors onboard satellites is an effective way to retrieve surface soil moisture (SSM) at a global scale, but the retrieval accuracy in some regions is inadequate due to the complicated factors influencing the general retrieval process. On the other hand, monitoring soil moisture directly through in-situ devices is capable of providing high-accuracy SSM measurements, but the distribution of such stations is sparse. Recently, the Global Navigation Satellite System interferometric Reflectometry (GNSS-R) method was used to derive field-scale SSM, which can serve as a supplement to contemporary sparse in-situ soil moisture networks. On this basis, it is of great research significance to explore the fusion of these different kinds of SSM data, so as to improve the present satellite SSM products with regard to their data accuracy. In this paper, a multi-source point-surface fusion method based on the generalized regression neural network (GRNN) model is applied to fuse the Soil Moisture Active Passive (SMAP) Level 3 radiometer SSM daily product with in-situ measured and GNSS-R estimated SSM data from five soil moisture networks in the western continental U.S. The results show that the GRNN model obtains a fairly good performance, with a cross-validation R value of approximately 0.9 and a ubRMSE of 0.044 cm3 cm−3. Furthermore, the fused SSM product agrees well with the site-specific SSM data in terms of time and space, which demonstrates that the proposed GRNN model is able to construct the non-linear relationship between the point- and surface-scale SSM.


2018 ◽  
Vol 10 (2) ◽  
pp. 107 ◽  
Author(s):  
Robin van der Schalie ◽  
Richard de Jeu ◽  
Robert Parinussa ◽  
Nemesio Rodríguez-Fernández ◽  
Yann Kerr ◽  
...  

Author(s):  
P. Coppo ◽  
P. Ferrazzoli ◽  
S. Paloscia ◽  
P. Pampaloni ◽  
G. Schiavon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document