Capacity Allocation for Regional Integrated Energy System Considering Typical Day Economic Operation

Author(s):  
Zejian Liu ◽  
Ping Yang ◽  
Jiajun Peng ◽  
Wenzhi Lin ◽  
Chao Ji
Author(s):  
Tian Zhao ◽  
Qun Chen

In this contribution we introduced an integrated energy system consists of thermal power plants, combined heat-power (CHP) plants and wind power plants, and aimed to supply electricity and heat to users simultaneously. A large-scale battery, a TES device and heat transfer devices are included also. During the operation time of the battery, the TES device stores the generated heat and meanwhile supplies heat to users. Applying the power flow method, the electro-thermal analogy and the entransy dissipation-based thermal resistance method, we constructed the power flow model of the system. Besides, we optimized the system aimed to minimize wind curtailments. Optimization results presented for a typical day the system reduces wind curtailment percentage from 40.63 % to 13.70 % and supply 5% heat load. Besides, the operation strategy of the battery is to charge at night and discharge in the day.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3233
Author(s):  
Bin Ouyang ◽  
Zhichang Yuan ◽  
Chao Lu ◽  
Lu Qu ◽  
Dongdong Li

The integrated energy system coupling multi-type energy production terminal to realize multi-energy complementarity and energy ladder utilization is of great significance to alleviate the existing energy production crisis and reduce environmental pollution. In this paper, the topology of the cold-thermal-electricity integrated energy system is built, and the decoupling method is adopted to analyze the feasible interval of load rate under the strong coupling condition, so as to ensure the “source-load” power balance of the system. Establishing a multi-objective optimization function with the lowest system economic operation and pollution gas emission, considering the attribute differences and energy scheduling characteristics of different energy sources of cold, heat and electricity, and adopting different time scales to optimize the operation of the three energy sources of cold, heat and electricity, wherein the operation periods of electric energy, heat energy and cold energy are respectively 15 min, 30 min and 1 h; The multi-objective problem is solved by standard linear weighting method. Finally, the mixed integer nonlinear programming model is calculated by LINGO solver. In the numerical simulation, the hotel summer front load parameters of Zhangjiakou, China are selected for simulation and compared with a single time scale system. The simulation results show that the multi-time scale system reduces the economic operation cost by 15.6% and the pollution gas emission by 22.3% compared with the single time scale system, it also has a wider feasible range of load rate, flexible time allocation, and complementary energy selection.


2020 ◽  
Vol 185 ◽  
pp. 01066
Author(s):  
Haifeng Li ◽  
Lufeng Chen ◽  
Gang Feng ◽  
Yongli Wang ◽  
Yang Ma ◽  
...  

At present, regional integrated energy system is considered as a novel form to improve the comprehensive energy efficiency and economy of the system by integrating multiple energy subsystems. The key link of integrated energy system planning and optimization is to determine the kind and installed capacity of source-side equipment, and how to make the equipment of the system cooperate and couple with each other. A model of equipment capacity allocation at the source side of integrated energy system is proposed, which can get the best equipment kind and installed capacity in the planning and optimization area. The objectives of the model are the optimal economy and the minimum carbon emission. In order to verify the effectiveness of the model proposed in this paper, three typical scenarios are set for comparative analysis. In the simulation, by comparing the economy and carbon emission of planning results in different scenarios, it can be found that there is a potential connection between the installed capacity of source-side equipment, and at the same time, the carbon emission will also affect the installed capacity of equipment. Renewable energy equipment has made great contribution to carbon emission, but its investment cost has greatly increased the system planning cost. Therefore, system economy and carbon emission are mutually exclusive to a certain extent.


Energy ◽  
2022 ◽  
Vol 240 ◽  
pp. 122795
Author(s):  
Guangming Zhang ◽  
Wei Wang ◽  
Zhenyu Chen ◽  
Ruilian Li ◽  
Yuguang Niu

Sign in / Sign up

Export Citation Format

Share Document