power to gas
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 336)

H-INDEX

40
(FIVE YEARS 14)

Energy ◽  
2022 ◽  
Vol 240 ◽  
pp. 122835
Author(s):  
Javad Salehi ◽  
Amin Namvar ◽  
Farhad Samadi Gazijahani ◽  
Miadreza Shafie-khah ◽  
João P.S. Catalão

2022 ◽  
Vol 9 ◽  
Author(s):  
Chung Hong Tan ◽  
Saifuddin Nomanbhay ◽  
Abd Halim Shamsuddin ◽  
Young-Kwon Park ◽  
H. Hernández-Cocoletzi ◽  
...  

The utilization of fossil fuel has increased atmospheric carbon dioxide (CO2) concentrations drastically over the last few decades. This leads to global warming and climate change, increasing the occurrence of more severe weather around the world. One promising solution to reduce anthropogenic CO2 emissions is methanation. Many researchers and industries are interested in CO2 methanation as a power-to-gas technology and carbon capture and storage (CCS) system. Producing an energy carrier, methane (CH4), via CO2 methanation and water electrolysis is an exceptionally effective method of capturing energy generated by renewables. To enhance methanation efficiency, numerous researches have been conducted to develop catalysts with high activity, CH4 selectivity, and stability against the reaction heat. Therefore, in this mini-review, the characteristics and recent advances of metal-based catalysts in methanation of CO2 is discussed.


2022 ◽  
Author(s):  
Dominik Meyer ◽  
Jannik Schumacher ◽  
Jens Friedland ◽  
Robert Güttel

The utilization of renewable electricity for power-to-gas (PtG) applications induces fluctuations in the H2 availability from water electrolysis. For subsequent methanation of CO or CO2 the unsteady-state operation of the respective reactor allows to minimize H2 storage capacities. However, the impact of temporal fluctuations in feed gas composition on the methanation reaction and the respective transient kinetics has not yet been fully understood. We investigated the methanation of various CO/CO2 (COx) feed gas mixtures under periodically changing gas compositions with emphasis on the effect of the frequency on the reactor response. We show that the frequency response of CH4 exhibits a characteristic hysteresis, which depends on the switching direction between COx-lean and COx-rich feeds and their composition. From the shape of the hysteresis we are able to conclude on the preferred COx species being hydrogenated to CH4 under respective conditions, which also provides mechanistic insights. By applying high cycling frequencies, the highly reactive species present under CO methanation conditions can even selectively be activated, which explains the higher reactivity compared to steady-state conditions reported, frequently.


2022 ◽  
Vol 14 (2) ◽  
pp. 786
Author(s):  
Francesco Di Maio ◽  
Pietro Tonicello ◽  
Enrico Zio

This paper proposes a novel framework for the analysis of integrated energy systems (IESs) exposed to both stochastic failures and “shock” climate-induced failures, such as those characterizing NaTech accidental scenarios. With such a framework, standard centralized systems (CS), IES with distributed generation (IES-DG) and IES with bidirectional energy conversion (IES+P2G) enabled by power-to-gas (P2G) facilities can be analyzed. The framework embeds the model of each single production plant in an integrated power-flow model and then couples it with a stochastic failures model and a climate-induced failure model, which simulates the occurrence of extreme weather events (e.g., flooding) driven by climate change. To illustrate how to operationalize the analysis in practice, a case study of a realistic IES has been considered that comprises two combined cycle gas turbine plants (CCGT), a nuclear power plant (NPP), two wind farms (WF), a solar photovoltaicS (PV) field and a power-to-gas station (P2G). Results suggest that the IESs are resilient to climate-induced failures.


2022 ◽  
Vol 305 ◽  
pp. 117713
Author(s):  
Jussi Ikäheimo ◽  
Robert Weiss ◽  
Juha Kiviluoma ◽  
Esa Pursiheimo ◽  
Tomi J. Lindroos

2022 ◽  
Vol 334 ◽  
pp. 08012
Author(s):  
Giorgia Ghiara ◽  
Stefano Trasatti ◽  
Andrea Goglio ◽  
Pierangela Cristiani

Electromethanogenesis is an innovative technology that uses a microbial electrochemical system to produce methane from CO2, in a power-to-gas (BEP2G) concept. The results of experimental tests of new and cost-effective carbonaceous materials for electrode are presented here. The study aims at optimizing electromethanogenesis processes at laboratory level in mesothermic condition. As part of the experiments, hydrogenotrophic microorganisms (Family Metanobacteriaceae of Archaea domains) were selected from a mixed consortium taken from a biogas digestate and inoculated in double-chamber bioelectrochemical systems. The maximum amount of methane produced was 0.3 - 0.8 mol/m2g (normalized to the cathode area) with carbon cloth electrodes. Aiming at improving the methane productivity, innovative materials for the electrodes were now studied, creating porous high-surface composites, and studying nitrogen carbons doped with Cu and hydroxyapatite (Multicomposite Cu@/HAP/C), as chemical catalysts for CO2 reduction (CO2RR). The description of the procedure for the Multicomposite Cu@/HAP/C production is reported in detail.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Ali M. Abdel-Mageed ◽  
Sebastian Wohlrab

The valorization of carbon dioxide by diverting it into useful chemicals through reduction has recently attracted much interest due to the pertinent need to curb increasing global warming, which is mainly due to the huge increase of CO2 emissions from domestic and industrial activities. This approach would have a double benefit when using the green hydrogen generated from the electrolysis of water with renewable electricity (solar and wind energy). Strategies for the chemical storage of green hydrogen involve the reduction of carbon dioxide to value-added products such as methane, syngas, methanol, and their derivatives. The reduction of CO2 at ambient pressure to methane or carbon monoxide are rather facile processes that can be easily used to store renewable energy or generate an important starting material for chemical industry. While the methanation pathway can benefit from existing infrastructure of natural gas grids, the production of syngas could be also very essential to produce liquid fuels and olefins, which will also be in great demand in the future. In this review, we focus on the recent advances in the thermocatalytic reduction of CO2 at ambient pressure to basically methane and syngas on the surface of supported metal nanoparticles, single-atom catalyst (SACs), and supported bimetallic alloys. Basically, we will concentrate on activity, selectivity, stability during reaction, support effects, metal-support interactions (MSIs), and on some recent approaches to control and switch the CO2 reduction selectivity between methane and syngas. Finally, we will discuss challenges and requirements for the successful introduction of these processes in the cycle of renewable energies. All these aspects are discussed in the frame of sustainable use of renewable energies.


Sign in / Sign up

Export Citation Format

Share Document