typical day
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 76)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Alister Stubbe

<p>A literature review was carried out on the impact of moisture in New Zealand homes as well as the role ventilation and occupant behaviour play in controlling this. Bathrooms in residential homes were identified as being especially vulnerable. NZS4303:1990, clause G4 Ventilation of the New Zealand Building Code, and clause E3 of the New Zealand Building Code were summarised to provide context for how New Zealand buildings are designed.  Measurements taken in houses throughout New Zealand by BRANZ as part of the House Condition Survey were made available for analysis. This included measurements of relative humidity and temperature.  Data from one Dunedin house was thoroughly explored. This involved three objectives. The first step focused on identifying periods of rapid change in the amount of moisture introduced to the indoor environment, measured in absolute humidity. These periods were named 'moisture events'. The second objective was to visually communicate the changes in temperature and absolute humidity taking place on individual days, highlighting moisture events. The third objective was to analyse the identified moisture events, finding the key areas to focus on for the full analysis as well as areas that could be explored in further research. This process was then applied to all remaining houses.  Moisture events were grouped into four categories: increases, decreases, episodes, and combinations. Episodes were the focus of the analysis, representing moisture being actively introduced to the indoor environment and then removed. These categories were further filtered, identifying the moisture events were most likely to have had a large impact on the indoor environment. Days were broken into four hour periods, with the filtered moisture events taking place in each period recorded. These were used to identify patterns in moisture events for each house. If a certain pattern of moisture events frequently took place, then days containing that pattern were described as a 'typical day' for that house.  The mean and median absolute humidity at the start, peak, and end of the unfiltered episodes from each house were then calculated. The mean and median episode length was also calculated. The results were compared to the Household Energy End-use Project (HEEP) and to the typical days for each house. The results were grouped according to factors such as the number of bathrooms in the house, the floor area, the house location, and the event length.  The number of bathrooms present in the house was found to have a large impact on the size and frequency of moisture events. As expected, larger bathrooms recorded lower increases in absolute humidity from the start to the peak of episodes. Rooms with a greater volume would require more moisture to reach the same number of grams of water per cubic metre. However, the smallest bathrooms also recorded low increases in absolute humidity.</p>


2021 ◽  
Author(s):  
◽  
Mohsen Hajsalehi Sichani

<p>A comprehensive traffic monitoring system can assist authorities in identifying parts of a road transportation network that exhibit poor performance. In addition to monitoring, it is essential to develop a localized and efficient analytical transportation model that reflects various network scenarios and conditions. A comprehensive transportation model must consider various components such as vehicles and their different mechanical characteristics, human and their diverse behaviours, urban layouts and structures, and communication and transportation infrastructure and their limitations. Development of such a system requires a bringing together of ideas, tools, and techniques from multiple overlapping disciplines such as traffic and computer engineers, statistics, urban planning, and behavioural modelling. In addition to modelling of the urban traffic for a typical day, development of a large-scale emergency evacuation modelling is a critical task for an urban area as this assists traffic operation teams and local authorities to identify the limitations of traffic infrastructure during an evacuation process through examining various parameters such as evacuation time. In an evacuation, there may be severe and unpredictable damage to the infrastructure of a city such as the loss of power, telecommunications and transportation links. Traffic modelling of a large-scale evacuation is more challenging than modelling the traffic for a typical day as historical data is usually available for typical days, whereas each disaster and evacuation are typically one-off or rare events. Damage due to a disaster, combined with a sudden increase of demand due to the evacuation of people will likely result in increased pressure on the remaining, potentially fragmented, infrastructure. The lessons learnt from evacuation modelling can assist traffic operation teams and local authorities to provide safer and more efficient planning. The development of pervasive personal digital devices such as phones, watches, and headphones which can be interconnected with technologies such as Bluetooth, has led to a disruptive change in the ways in which local governments can monitor traffic flows within their cities. Moreover, modern vehicles and navigation systems can interconnect to the personal devices of drivers and passengers primarily via Bluetooth technologies. By continuously monitoring such devices when they are discoverable and in range, traffic patterns can be estimated based on, not only the volume of detection, but also other characteristics of the devices that can be used to give more refined estimates of the real underlying traffic flows. This thesis examines Bluetooth traffic data collected from Bluetooth Traffic Monitoring Systems (BTMS) for modelling and monitoring the urban traffic. BTMS can monitor and track individual detected vehicles through a city. Installation, processing, data transmission, and maintenance of BTMS are easier, quicker and cheaper than existing standard monitoring systems such as CCTV cameras and inductive loops. Inductive loops are typically point-wise traffic monitoring systems that are installed in the roads and can measure the traffic flow. However, the use of BTMS devices presents several challenges: not every vehicle has a detectable device, some have many, and there are devices carried by pedestrians and non-motor vehicles as well as stationary devices. This thesis enumerates and investigates these challenges through statistical modelling, various protocols for cleaning and data preparation, dynamic estimation of the detection rate, and simulation through the case study of the city of Wellington, New Zealand. The city of Wellington experienced damage from the 2016 Kaikoura earthquake (a magnitude 7.8 earthquake), which led to road closures and other infrastructure damage. As part of modelling, performance evaluation, and identifying impacted routes by the 2016 Kaikoura earthquake, this thesis analyses three weeks of BTMS data from the periods before and after the earthquake. Furthermore, this thesis proposes a multi-disciplinary dynamic traffic modelling (TFDA2M) framework and evaluates the performance of TFDA2M on various large-scale evacuation scenarios. These scenarios cover a wide range of real-world use cases which may occur during a disaster such as power failure, an abrupt increase in demand, and damage to the main transportation infrastructure. The findings of this thesis highlight an immediate need for preparations of a large-scale evacuation planning for Wellington to mitigate the consequences of a large-scale evacuation due to a future disaster.  Moreover, TFDA2M can assist traffic operation managers and authorities in making smarter decisions (both quantitative and spatially) through the simulation process. Since TFDA2M has a flexible schema, it can be set to monitor, assess, and manage the traffic flow on a daily basis and disaster occasions.</p>


2021 ◽  
Author(s):  
◽  
Mohsen Hajsalehi Sichani

<p>A comprehensive traffic monitoring system can assist authorities in identifying parts of a road transportation network that exhibit poor performance. In addition to monitoring, it is essential to develop a localized and efficient analytical transportation model that reflects various network scenarios and conditions. A comprehensive transportation model must consider various components such as vehicles and their different mechanical characteristics, human and their diverse behaviours, urban layouts and structures, and communication and transportation infrastructure and their limitations. Development of such a system requires a bringing together of ideas, tools, and techniques from multiple overlapping disciplines such as traffic and computer engineers, statistics, urban planning, and behavioural modelling. In addition to modelling of the urban traffic for a typical day, development of a large-scale emergency evacuation modelling is a critical task for an urban area as this assists traffic operation teams and local authorities to identify the limitations of traffic infrastructure during an evacuation process through examining various parameters such as evacuation time. In an evacuation, there may be severe and unpredictable damage to the infrastructure of a city such as the loss of power, telecommunications and transportation links. Traffic modelling of a large-scale evacuation is more challenging than modelling the traffic for a typical day as historical data is usually available for typical days, whereas each disaster and evacuation are typically one-off or rare events. Damage due to a disaster, combined with a sudden increase of demand due to the evacuation of people will likely result in increased pressure on the remaining, potentially fragmented, infrastructure. The lessons learnt from evacuation modelling can assist traffic operation teams and local authorities to provide safer and more efficient planning. The development of pervasive personal digital devices such as phones, watches, and headphones which can be interconnected with technologies such as Bluetooth, has led to a disruptive change in the ways in which local governments can monitor traffic flows within their cities. Moreover, modern vehicles and navigation systems can interconnect to the personal devices of drivers and passengers primarily via Bluetooth technologies. By continuously monitoring such devices when they are discoverable and in range, traffic patterns can be estimated based on, not only the volume of detection, but also other characteristics of the devices that can be used to give more refined estimates of the real underlying traffic flows. This thesis examines Bluetooth traffic data collected from Bluetooth Traffic Monitoring Systems (BTMS) for modelling and monitoring the urban traffic. BTMS can monitor and track individual detected vehicles through a city. Installation, processing, data transmission, and maintenance of BTMS are easier, quicker and cheaper than existing standard monitoring systems such as CCTV cameras and inductive loops. Inductive loops are typically point-wise traffic monitoring systems that are installed in the roads and can measure the traffic flow. However, the use of BTMS devices presents several challenges: not every vehicle has a detectable device, some have many, and there are devices carried by pedestrians and non-motor vehicles as well as stationary devices. This thesis enumerates and investigates these challenges through statistical modelling, various protocols for cleaning and data preparation, dynamic estimation of the detection rate, and simulation through the case study of the city of Wellington, New Zealand. The city of Wellington experienced damage from the 2016 Kaikoura earthquake (a magnitude 7.8 earthquake), which led to road closures and other infrastructure damage. As part of modelling, performance evaluation, and identifying impacted routes by the 2016 Kaikoura earthquake, this thesis analyses three weeks of BTMS data from the periods before and after the earthquake. Furthermore, this thesis proposes a multi-disciplinary dynamic traffic modelling (TFDA2M) framework and evaluates the performance of TFDA2M on various large-scale evacuation scenarios. These scenarios cover a wide range of real-world use cases which may occur during a disaster such as power failure, an abrupt increase in demand, and damage to the main transportation infrastructure. The findings of this thesis highlight an immediate need for preparations of a large-scale evacuation planning for Wellington to mitigate the consequences of a large-scale evacuation due to a future disaster.  Moreover, TFDA2M can assist traffic operation managers and authorities in making smarter decisions (both quantitative and spatially) through the simulation process. Since TFDA2M has a flexible schema, it can be set to monitor, assess, and manage the traffic flow on a daily basis and disaster occasions.</p>


2021 ◽  
Author(s):  
◽  
Alister Stubbe

<p>A literature review was carried out on the impact of moisture in New Zealand homes as well as the role ventilation and occupant behaviour play in controlling this. Bathrooms in residential homes were identified as being especially vulnerable. NZS4303:1990, clause G4 Ventilation of the New Zealand Building Code, and clause E3 of the New Zealand Building Code were summarised to provide context for how New Zealand buildings are designed.  Measurements taken in houses throughout New Zealand by BRANZ as part of the House Condition Survey were made available for analysis. This included measurements of relative humidity and temperature.  Data from one Dunedin house was thoroughly explored. This involved three objectives. The first step focused on identifying periods of rapid change in the amount of moisture introduced to the indoor environment, measured in absolute humidity. These periods were named 'moisture events'. The second objective was to visually communicate the changes in temperature and absolute humidity taking place on individual days, highlighting moisture events. The third objective was to analyse the identified moisture events, finding the key areas to focus on for the full analysis as well as areas that could be explored in further research. This process was then applied to all remaining houses.  Moisture events were grouped into four categories: increases, decreases, episodes, and combinations. Episodes were the focus of the analysis, representing moisture being actively introduced to the indoor environment and then removed. These categories were further filtered, identifying the moisture events were most likely to have had a large impact on the indoor environment. Days were broken into four hour periods, with the filtered moisture events taking place in each period recorded. These were used to identify patterns in moisture events for each house. If a certain pattern of moisture events frequently took place, then days containing that pattern were described as a 'typical day' for that house.  The mean and median absolute humidity at the start, peak, and end of the unfiltered episodes from each house were then calculated. The mean and median episode length was also calculated. The results were compared to the Household Energy End-use Project (HEEP) and to the typical days for each house. The results were grouped according to factors such as the number of bathrooms in the house, the floor area, the house location, and the event length.  The number of bathrooms present in the house was found to have a large impact on the size and frequency of moisture events. As expected, larger bathrooms recorded lower increases in absolute humidity from the start to the peak of episodes. Rooms with a greater volume would require more moisture to reach the same number of grams of water per cubic metre. However, the smallest bathrooms also recorded low increases in absolute humidity.</p>


Author(s):  
Subramaniyan C ◽  
◽  
Prakash K B ◽  
Amarkarthik A ◽  
Kalidasan B ◽  
...  

Demand and conservation for potable water has become a foremost concern world-wide. Many technologies were adapted for converting the saline water to potable water to meet the required demand on water conservation. In the current research work triangular solar still with rectangular-fins attached to the basin is proposed to enhance the output of potable water from the solar still setup. Solar still with and without rectangular-fins on the basin are fabricated for experimental comparison and evaluation in addition to numerical investigations. Thermal Performance, instantaneous efficiency and potable water output of the proposed solar still & base solar still are investigated during March month for the location of Sathyamangalam. Investigation shows enhancement of water production in the proposed solar still by 41% higher compared to the base still. The maximum distillate output from modified still and base still for a typical day is 3.1 liter and 2.2 liter respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Yang ◽  
Shuhua Zhu ◽  
Yulu Gan ◽  
Junhua Dang

Authentic self is believed to be morally good. The current research proposes that the authentic self is also environmentally good. Across two studies, we tested the link between authenticity and pro-environmental attitude and behavior. In Study 1 (N=2,646), dispositional authenticity was found to be a predictor of pro-environmental behavior (PEB). In Study 2 (N=474), participants in the authentic condition (recalling their experiences of being authentic) were more willing to donate money to protect the environment than those in the inauthentic (recalling their experiences of being inauthentic) or the neutral (recalling their experiences of a typical day) conditions. Participants in the authentic condition also reported higher intention to conduct PEB than their peers in the other conditions. The results of the present research provide initial evidence that people are more likely to endorse pro-environmental attitude and behave pro-environmentally when being authentic.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 77
Author(s):  
Naseer T. Alwan ◽  
Milia H. Majeed ◽  
Sergey E. Shcheklein ◽  
Obed M. Ali ◽  
Seepana PraveenKumar

The low freshwater productivity of a conventional solar still is considered a challenge for researchers due to the high temperature of the glass cover or basin water depth. In current work, a newly designed solar still was suggested according to the climatic conditions of Yekaterinburg/Russia, which included an enhanced condensation and evaporation process by spraying a thin water film on a hot absorber plate and then passing the generated water vapor by free convection over the aluminum plate (low temperature). The distillation system under study was tested during July 2020 and 29 July was chosen as a typical day from 08:00 a.m. to 8:00 p.m. The results showed that the largest amount of water vapor condenses on the aluminum plate (about 46%), and the rest condenses on the glass cover. This means that the aluminum plate effectively improved productivity due to the flow of humid air naturally (free convection) on the aluminum plate (its surface temperature was lower than that of the glass cover). The cost analytical calculations showed that the cost of producing one liter of distilled water from the suggested solar still was 0.063$.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012098
Author(s):  
Lichao Lv ◽  
Du Wang ◽  
Ying Chen ◽  
Hao Chen ◽  
JiaQian Wei

Abstract This paper takes a data center air-conditioning cold source system as the research object. According to the historical operating data of the cold source system in the transition season, a cold source model is built on the EBSILON platform. The total energy consumption of the cold source system is the research goal. This paper establishes an overall optimization strategy based on PSO-SA. A simulation experiment was conducted on a typical day in the transition season, and the results showed that the optimization strategy can achieve 21.68% energy saving based on the original operation mode when the wet bulb temperature in the transition season is low.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 6981
Author(s):  
Lydia Negka ◽  
Georgios Spathoulas

The automotive industry has been transformed through technological progress during the past decade. Vehicles are equipped with multiple computing devices that offer safety, driving assistance, or multimedia services. Despite these advancements, when an incident occurs, such as a car crash, the involved parties often do not take advantage of the technological capabilities of modern vehicles and attempt to assign liability for the incident to a specific vehicle based upon witness statements. In this paper, we propose a secure, decentralized, blockchain-based platform that can be employed to store encrypted position and velocity values for vehicles in a smart city environment. Such data can be decrypted when the need arises, either through the vehicle driver’s consent or through the consensus of different authorities. The proposed platform also offers an automated way to resolve disputes between involved parties. A simulation has been conducted upon a mobility traffic dataset for a typical day in the city of Cologne to assess the applicability of the proposed methodology to real-world scenarios and the infrastructure requirements that such an application would have.


2021 ◽  
Vol 36 (2) ◽  
pp. 88-93
Author(s):  
Jamil M Lane ◽  
Brandon W Qualls ◽  
Jason D Freeman ◽  
Daniel Rodriguez

Background: Cancer worry has been conceptualized as a potential motivator to engage in cancer preventative behaviors like cancer screening, genetic testing, or smoking cessation. It is currently unknown if these findings extend to the domain of physical activity, as physical activity has been associated with decreased cancer risk. Objective: To examine if the association between cancer worry and other health behaviors will extend to physical activity in a sample of adults not diagnosed with cancer. Methods: Data are drawn from the NCI's 2017 Health Information National Trends Survey (HINTS) Iteration 5 Cycle 1 (N = 2,706) dataset, a nationally representative survey of adults in the United States. A KruskalWallis-H test was conducted to determine whether physical activity duration (i.e., daily minutes) differed between cancer worry levels with a post hoc Dunn's multiple comparison test to compare the differences between mean ranks. Results: A Kruskal-Wallis-H test showed statistically significant differences in PA duration (i.e., daily minutes) between groups that differed in their level of cancer worry. PA in minutes on a typical day was significantly lower in those who reported not at all, moderate, and extreme worry about developing cancer compared to those who reported slightly and somewhat worried. Conclusion: Contrary to our expectations, our results suggest that higher cancer worry levels are paradoxically associated with less PA. This study's results are significant in that they add to the breadth of literature linking cancer worry to health behaviors and may be used to inform future health promotion interventions.


Sign in / Sign up

Export Citation Format

Share Document