Modeling infiltration responses of layered soil column under rainfall conditions

Author(s):  
Dejun Yang ◽  
Zhengfu Bian
Keyword(s):  
2010 ◽  
Vol 71 ◽  
pp. S40-S47 ◽  
Author(s):  
Ying Ma ◽  
Shaoyuan Feng ◽  
Dongyuan Su ◽  
Guangyao Gao ◽  
Zailin Huo

1990 ◽  
Vol 9 (5) ◽  
pp. 541-549 ◽  
Author(s):  
H. Behrendt ◽  
M. Matthies ◽  
H. Gildemeister ◽  
G. Görlitz

Author(s):  
Xiao Wang ◽  
Yongtu Liang ◽  
Shengli Liu ◽  
Mengyu Wu

Abstract The most common way of transportation for refined oil is long-distance pipeline. Pipeline accidents occur frequently due to corrosion, equipment failure, external forces destruction. Aiming at predicting the contaminated area in soil caused by products pipeline accidents, this experimental study was conducted to examine the relationship between the light non-aqueous phase liquids (LNAPL) accumulative infiltrate volume and the time of infiltration process in homogeneous and layered soils. The soil’s hydraulic parameters were obtained by basic experiments and RETC software. Compared with traditional infiltration mathematical model, Green-Ampt model is the most common mathematical model to calculate the infiltration process in the unsaturated soil. In this study, a modified Green-Ampt model was developed to describe water and diesel infiltration through a 100-cm-long and layered soil column. In the modified Green-Ampt model, an infiltration reduction ratio was introduced to describe the effect of the hydraulic conductivity of the layered position. To evaluate the proposed method in the effect of the layers position infiltration permeability, eight constant water head layered column infiltration experiment were conducted to record the different infiltration fluid and different constant water head infiltration process. Compared the experiment results with traditional mathematical traditional Green-Ampt model (average R2 = 0.976) and Hydrus-1D software (average R2 = 0.988) The modified Green-Ampt model had relatively higher precision in accumulative infiltrate volume (average R2 = 0.992) and the wetting front velocity in infiltration process (average R2 = 0.997). Thus, the modified mathematical model was applied an effective upscaling scheme in layered formations. The experimental result also demonstrated that soil layering affected the infiltration process. With the increase of soil depth and density, the infiltration speed of the layered soil column decreased. Additionally, the infiltrate speed of wetting front decreases slowly at the layered surface. The experiment’s fitting results showed that the modified mathematical model about infiltrate time and liquid contaminant accumulative infiltrate volume, wetting front infiltrate velocity can highly effective approach to simulate water and light non-aqueous phase liquids (LNAPL) infiltration process in layered soils.


Author(s):  
Gregory G. Rucker

Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use.


2010 ◽  
Vol 18 (4) ◽  
pp. 683-688 ◽  
Author(s):  
Chao ZHANG ◽  
Yu-Ping CHE ◽  
Zhong-Pei LI

2017 ◽  
Vol 34 (4) ◽  
pp. 393
Author(s):  
Zhixiang Chen ◽  
Shunqun Li ◽  
Jinhong Xia ◽  
Kai Wang ◽  
Chao Gui

Sign in / Sign up

Export Citation Format

Share Document