Study on Periodic Self-excited Vibration Process of Top Water Seal for High Head Valve with Small Opening

Author(s):  
Shuhe Wei ◽  
Xin Wang
Wear ◽  
2021 ◽  
pp. 203854
Author(s):  
Xiaolu Cui ◽  
Zhiqiang He ◽  
Bo Huang ◽  
Yuanchang Chen ◽  
Zixue Du ◽  
...  

2009 ◽  
Vol 16 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Yongyao Luo ◽  
Zhengwei Wang ◽  
Guodong Chen ◽  
Zujian Lin
Keyword(s):  

2014 ◽  
Vol 70 (5) ◽  
pp. 871-877 ◽  
Author(s):  
Fahri Ozkan ◽  
M. Cihat Tuna ◽  
Ahmet Baylar ◽  
Mualla Ozturk

Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.


2011 ◽  
Vol 66-68 ◽  
pp. 933-936
Author(s):  
Xian Jie Meng

A one degree of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction was built firstly, the numerical method was taken to study the impacts of structure parameters on self-excited vibration. The calculation result shows that the variation of stiffness can change the vibration amplitude and frequency of the self-excited vibration, but can not eliminate it, Along with the increase of system damping the self-excite vibration has the weakened trend and there a ritical damping, when damping is greater than it the self-excite vibration will be disappeared.


Sign in / Sign up

Export Citation Format

Share Document